
A First Look at Conventional Commits Classification
Qunhong Zeng Yuxia Zhang† Zhiqing Qiu Hui Liu

School of Computer Science & Technology,
Beijing Institute of Technology,

Beijing, China
{qunhongzeng, yuxiazh, zhiqingqiu, liuhui08}@bit.edu.cn

Abstract—Modern distributed software development relies on
commits to control system versions. Commit classification plays a
vital role in both industry and academia. The widely-used commit
classification framework was proposed in 1976 by Swanson and
includes three base classes: perfective, corrective, and adaptive.
With the increasing complexity of software development, the
industry has shifted towards a more fine-grained commit category,
i.e., adopting Conventional Commits Specification (CCS) for
delicacy management. The new commit framework requires
developers to classify commits into ten distinct categories, such as
“feat”, “fix”, and “docs”. However, existing studies mainly focus
on the three-category classification, leaving the definition and
application of the fine-grained commit categories as knowledge
gaps. This paper reports a preliminary study on this mechanism
from its application status and problems. We also explore ways
to address these identified problems. We find that a growing
number of projects on GitHub are adopting CCS. By qualitatively
analyzing 194 issues from GitHub and 100 questions from Stack
Overflow about the CCS application, we categorized four main
challenges developers encountered when using CCS. The most
common one is CCS-type confusion. To address these challenges,
we propose a clear definition of CCS types based on existing
variants. Further, we designed an approach to automatically
classify commits into CCS types, and the evaluation results
demonstrate a promising performance. Our work facilitates
a deeper comprehension of the present fine-grained commit
categorization and holds the potential to alleviate application
challenges significantly.

Index Terms—Commit Classification, Conventional Commits,
Large Language Model

I. INTRODUCTION

Modern distributed software development relies on version
control systems (VCS), such as Git, to facilitate change tracking
and collaboration [1]. Developers conduct diverse activities,
such as implementing new features or fixing bugs, enacting
corresponding code changes, and commit them to the VCS,
thereby creating a new version. When committing code changes
to the VCS, developers must compose a commit message to
describe the modifications.

In 1976, Swanson [2] categorized commit activities into
three fundamental types: perfective, adaptive, and corrective,
to support cost-effective management and evolution of soft-
ware projects [2, 3]. While Swanson’s categories provide
a dimensional understanding of development maintenance
activities, they are not widely used in industrial practices
today. Modern software development complexities have led to

†Corresponding Author

different commit conventions across different projects [4, 5, 6].
For instance, ember.js [6] mandates a prefix <type> filed in
their commit messages, asking developers to classify commits
into six categories: feature, bug fix, cleanup, documentation,
security, and other. The machine-parsable <type> prefix in
these conventions facilitates automated processes like release
note generation [7] and semantic version bump [8]. However,
adhering to varying conventions across multiple projects can
be challenging for developers. To this end, the Conventional
Commits Specification (CCS) [9] offers a uniform commit
convention, independent of any specific project, enhancing the
readability for both humans and automated tools. Compared
to other conventions that are mainly customized for internal
project use, CCS aims to be a universal standard. To the best of
our knowledge, CCS is currently the most widely used commit
convention, which can be evidenced by the fact that mainstream
commit lint tools are developed specifically for CCS [7, 10].
Figure 1 illustrates the required format for a conventional
commit message and an example. CCS utilizes a mandatory
<type> prefix to categorize commits into ten distinct types that
indicate the essence of the commit. Popular types include “feat”
(feature), “fix” (bug fix), “docs” (documentation), “refactor”,
“ci” (continuous integration), “build” , etc [9]. Aligning with
Swanson’s taxonomy, “feat” corresponds to adaptive changes
and “fix” to corrective changes, while other types represent
various perfective modifications.

Sha: cd289c5b70177f20cf4f26b7b41a3958bddebf6d
Date: Sep 14,2021

feat(storage): remove unnecessary lines from
verify-wal test

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

fix: prevent racing of requests

Introduce a request id and reference to latest
request. Dismiss incoming responses other than
from latest request.

Reviewed-by: Z
Refs: #123

You are a commit classifier based on commit
message and code diff. Please classify the given
commit into one of the ten categories: docs, perf,
style, refactor, feat, fix, test, ci, build and
chore. The definitions of each category are as
follows:

<type_definitions>

- The given commit message <commit_message>

- The given commit diff: <commit_diff>

Fig. 1: Conventional commit format and an example

While commit classification based on Swanson’s categories is
well explored [3, 11, 12, 13, 14, 15], the classification based on
the CCS, to the best of our knowledge, remains an unresolved
gap. CCS is a relatively new convention for commit messages

2277

2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)

1558-1225/25/$31.00 ©2025 IEEE
DOI 10.1109/ICSE55347.2025.00011

compared to other conventions like semantic versioning [16].
In recent years, we have observed a growing trend in the
open-source community where more and more projects and
developers are adopting the CCS. Moreover, an interesting
phenomenon has been observed: Some commits conform to
CCS but are misclassified into incorrect categories, as illustrated
in Figure 2, where the commit is derived from InfluxDB1, a
popular Rust database project. This commit removes some
unnecessary lines of code, thus falling under the “refactor”
type rather than the “feat” type. Therefore, in this study,
we first investigate the adoption trend of CCS to gauge its
prevalence and application within the open-source community.
We then delve deeper into the challenges developers face when
classifying commits into CCS categories, aiming to understand
the reasons behind apparent misuses of commit types as shown
in Figure 2. Based on our findings, we propose an approach
for the automated classification of commits into CCS types.

Sha: fba4326c72fc22d81aba6976a9fef1e4b6154fd9
Date: Jun 28, 2019

feat(storage): remove unnecessary lines from
verify-wal test

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

fix: prevent racing of requests

Introduce a request id and reference to latest
request. Dismiss incoming responses other than
from latest request.

Reviewed-by: Z
Refs: #123

You are a commit classifier based on commit
message and code diff. Please classify the given
commit into one of the ten categories: docs, perf,
style, refactor, feat, fix, test, ci, build and
chore. The definitions of each category are as
follows:

<type_definitions>

- The given commit message <commit_message>

- The given commit diff: <commit_diff>

Fig. 2: Example of a commit misusing the <type> prefix

In our RQ1: “How common do projects apply Conventional
Commits Specification?”, we selected the top 500 GitHub
projects based on the star counts across seven mainstream
programming languages. After removing duplicates, we an-
alyzed a total of 3,058 state-of-the-art open-source projects.
Our findings reveal a consistent increase in CCS usage among
projects and individual developers. By 2023, 116 of the 3,058
top-starred projects have incorporated CCS as their commit
convention, and this number is steadily increasing. Additionally,
in projects not yet adopting CCS, nearly 10% of their commits
submitted in 2023 followed the CCS format, indicating its
rising popularity in open-source communities.

Motivated by the phenomenon where developers may mis-
classify commits (as shown in Figure 2), we propose RQ2:
“What challenges do developers face when classifying commits
into CCS types?”. To unveil these challenges, we conducted
a thematic analysis of all issues of CCS in their GitHub
repository2 and the top 100 questions on Stack Overflow related
to developers’ problems with CCS. Our analysis reveals that
developers do encounter challenges when classifying commits
into CCS types due to the lack of precise definitions assigned
to each type. Furthermore, developers rely on the definitions
provided by Angular projects [4], which are often ambiguous
and exhibit overlaps in their definitions. Consequently, devel-
opers may erroneously use types in their commit messages
in certain contexts. To tackle this issue, we propose a clearer
definition based on existing definitions and a literature review.

1https://github.com/influxdata/influxdb
2https://github.com/conventional-commits/conventionalcommits.org/issues

Automatical conventional commit classification helps devel-
opers categorize commits while writing conventional commit
messages, saving time and reducing errors. It also may facilitate
the transformation of older non-CCS-compliant commit history
into CCS-compliant, making them compatible with CCS-based
automation tools. (See Section II-A for more details). In
academia, conventional commit classification can also serve as
a tool for empirical studies in software engineering, such as
developer skill assessment [17] or characterizing companies’
performance in open-source software [18]. Therefore, in our
RQ3: “Can we automatically classify commits into CCS
types?”, we first investigate the potential for automated con-
ventional commits classification. Compared to previous studies
that focus on three basic categories [3, 11, 12, 13, 14, 15],
automatically classifying commits into the ten finer-grained
CCS types presents a greater challenge, requiring a deeper
understanding of code changes. We harnessed the code com-
prehension capabilities of Large Language Models (LLMs),
fine-tuning an LLM for conventional commit classification.
Our Approach demonstrates superior classification performance
compared to various baselines and ChatGPT4 [19], the most
advanced LLM developed by OpenAI.

The main contributions of this work are as follows:

1) We conducted a thorough investigation into the trends of
CCS adoption among projects and developers in the open-
source community and identified two distinct patterns of
CCS application within projects.

2) We uncover four challenges developers face when clas-
sifying commits according to CCS, which is due to the
lack of a clear and non-overlapping list of type definitions
in CCS. To move this forward, we propose a clearer and
less overlapping definition list based on industry practices
and literature review.

3) We have developed a model that classifies commits into
fine-grained conventional commits types (10 categories).
This model surpasses a range of baseline models in clas-
sification performance, including ChatGPT-4, achieving
state-of-the-art results.

The remainder of the paper is organized as follows. Section II
provides the necessary background, and Section III introduces
our dataset. Sections IV to VI detail the methods and findings
of each of the three research questions. Section VII discusses
the practical and academic implications based on our results.
Threats to validity are addressed in Section VIII, and the paper
concludes with Section IX.

II. BACKGROUND

In this section, we begin by introducing the Conventional
Commits Specification, detailed in Section II-A. Subsequently,
we discuss the related work of commit classification, as
elaborated in Section II-B. Given that our approach adopts a
Large Language Model (LLM) to commit classification, Section
II-C is dedicated to presenting the background of LLMs and
the techniques for fine-tuning LLMs.

2278

A. Conventional Commits Specification

Conventional Commits Specification (CCS) is a specification
for adding human- and machine-readable meaning to commit
messages [9]. This specification provides an easy set of rules
for creating an explicit commit history. It mandates that each
commit message conforms to a specific format, as Figure
1 demonstrates. Within this format, the fields <type> and
<description> are mandatory, while others are optional. The
prefix <type> field, in particular, is used to denote the essence
of code changes. It encompasses a range of ten options,
including but not limited to “feat” for introducing a new feature,
“fix” for bug fixes, and “docs” for documentation changes.
The <description> field succinctly summarizes the commit,
whereas the optional body field provides a more expansive
explanation of the changes. Additionally, the optional scope
field specifies the particular area impacted by the commit,
and the optional footers section contains pertinent metadata
about the commits, such as associated GitHub issues, reviewers,
assigners, and more.

On one hand, the CCS assists in communicating the nature
of changes to teammates, the public, and other stakeholders. It
makes it easier for people to contribute to projects by allowing
them to explore a more structured commit history. On the
other hand, its machine-readable format paves the way for the
development of automated tools. Taking semantic versioning
[16] as an example, where version numbers comprise three
parts: major.minor.patch. Here, the major version signals a
breaking change, a minor version increment indicates the
addition of a new backwards-compatible feature, and a patch
version increment denotes a bug fix. CCS dovetails with
SemVer [16] by detailing the features, fixes, and breaking
changes in commit messages, thereby facilitating the automatic
determination of semantic version bumps3. Additionally, it aids
in the automatic generation of release notes [20] and changelogs
based on the types of commits landed [7]. Therefore, CCS has
been widely adopted, especially in open-source projects and
agile development teams.

B. Related Work

In the sphere of software engineering, the application of the
Conventional Commits Specification for commit classification
remains underexplored, with the bulk of existing research
anchored in Swanson’s categorization of corrective, perfective,
and adaptive changes [2]. These studies often leverage commit
messages as a primary information source, supplementing them
with code change features to enhance classification accuracy
[21]. Pioneering works by Mockus et al. [3] and Hindle et
al. [22] utilized word frequency analysis to represent commit
messages for classification purposes. Levin and Yehudai [12]
innovated further by introducing one-hot keyword vectors for
representing commit messages. They also leveraged ChangeDis-
tiller [23] to extract features from code changes, thereby
enhancing the accuracy of commit classification. Gharbi et al.
[24] and Sarwar et al. [15] conceptualized commit classification

3https://github.com/googleapis/release-please-action

as a multi-label rather than a multi-class task. Gharbi et al. [24]
used Term Frequency-Inverse Document Frequency (TF-IDF)
to encode commit messages and employed active learning to
reduce the volume of data requiring labeling. Sarwar et al. [15]
applied BERT to encode commit messages. Further advancing
the field, Ghadhab et al. [11] extracted features related to
bug fixes and refactoring from code changes and employed
BERT to encode commit messages. Similarly, Lee et al. [13]
utilized CodeBERT [25] to extract features from code changes
automatically and incorporated these with commit message
features for enhanced classification.

While several works [26, 27] focused on commit message
generation have mentioned CCS, these studies typically pre-
process CCS-compliant commit messages by removing their
prefix <type> to render them into a format suitable for model
training.

To the best of our knowledge, we are the first to investigate
the application of the CCS within the open-source community,
encompassing trends, challenges, and solutions. We first delve
into CCS-based commit classification, classifying commits into
ten more detailed categories extensively utilized in the industry.

C. Large Language Models

The development of large language models (LLMs) has
undergone four stages, evolving from Statistical Language
Models (SLMs) to Neural Language Models (NLMs), then to
Pre-trained Language Models (PLMs), and finally to the recent
advent of Large Language Models (LLMs) [28]. Compared to
their predecessors, a notable distinction of LLMs lies in their
scalability. The research found that scaling the size of PLMs
(model size or data size) unlocks surprising abilities in solving
a series of complex tasks that may not be observed in previous
smaller PLMs [29]. LLMs, such as ChatGPT [19], and LLaMa2
[30], are built upon multi-layer Transformer architectures [31]
and possess hundreds of billions of parameters, trained using
massive text data. In software engineering, LLMs have shown
remarkable performances in tasks such as code generation [32],
program repair [33], and pull request review generation [34].

Traditionally, fine-tuning large-scale models necessitates
updating all or a substantial fraction of their parameters. This
process can be both computationally burdensome and time-
intensive [35]. Low-Rank Adaptation (LoRA) [36] introduces
a novel parameter-efficient fine-tuning approach. It involves
retaining the original large model’s parameters in a static
state while integrating adaptable low-rank matrices into the
transformer layers. Specifically, for a pre-trained parameter
W0 ∈ Rd×k, LoRA facilitates its modification via a low-rank
decomposition expressed as W0 + △W = W0 + BA. Here,
B ∈ Rd×r and A ∈ Rr×k, with the rank r, constrained by
r ≤ min(d, k), serving as a hyperparameter. Throughout the
fine-tuning phase, LoRA keeps W0 unchanged, updating only
the trainable matrices A and B. This methodology effectively
reduces the parameters requiring updates from O(d × k)
to O(r × (d + k)), thereby considerably diminishing the
computational resources and time needed for model fine-tuning.

2279

In this work, we utilize Meta’s open-source CodeLlama
[37] as our base model and fine-tune it using LoRA [36].
CodeLlama, initialized with Llama2 [30] parameters and trained
on a variety of code-related tasks, has achieved state-of-the-
art performance in numerous code-related benchmarks [37],
making it an ideal choice for our commit classification task.

III. DATASET

We investigate the adoption of Conventional Commits Speci-
fication (CCS) in leading open-source projects with significant
followings and user bases. These projects typically have
frequent updates and commits, providing an ideal environment
for examining CCS in real-world applications. We focus
on seven prominent programming languages: Go, JavaScript,
Python, Rust, Java, C++, and TypeScript. We select the 500
most-starred projects for each language utilizing GitHub’s
REST API4. A deduplication process is necessary because of
the multi-language development approach of certain projects.
This yielded a final dataset of 3,058 unique projects with a
median star count of 4,661, underscoring their prominent role
in the open-source community.

CCS offers detailed guidelines on crafting commit messages
on its website “conventionalcommits.org”. We observed that
repositories using CCS typically include this URL in their
documentation, directing developers to CCS for a thorough
understanding, akin to a citation mechanism. Therefore, in
this study, we used the URL “conventionalcommits.org” as
a keyword to accurately identify repositories that explicitly
adopt CCS. Upon searching this keyword in each project’s
codebase, we found that 119 repositories mentioned “conven-
tionalcommits.org” in their documentation. To ensure accuracy,
we manually reviewed these 119 repositories to confirm their
use of CCS as their commit convention. During this step,
we discovered that three repositories mentioned CCS but did
not adopt it as their commit convention. Consequently, we
removed the three repositories, resulting in 116 repositories
that definitively use CCS. These 116 repositories encompass
a wide range of software domains, including cross-platform
application frameworks, JavaScript runtimes, data analysis tools,
etc. Table I provides select examples from our dataset, as well
as the number of projects for each language represented in our
dataset. We provide the full list of these 116 repositories in
our online appendix [38].

TABLE I: Dataset Overview

Language #Projects Example Project #Example Project Star

Go 19 kratos 21,698
JavaScript 5 ui-grid 5,394
Python 3 flagsmith 3,623
Rust 31 deno 91,452
Java 6 dataease 13,409
C++ 4 electron 109,712
TypeScript 48 nuxt 48,531

4https://docs.github.com/en/rest

fix
ch

or
e

fea
t

re
fac

tor
do

cs tes
t

bu
ild ci

sty
le

pe
rf

0

25,000

20,000

15,000

10,000

5,000

Fig. 3: Number of commits for each CCS type in the
dataset

The CCS format can be parsed using regular expressions. We
utilized conventional-pre-commit5, a widely-used Python-based
check hook for CCS, to verify whether commits adhere to the
CCS format. Among the 116 repositories, we identified a total
of 276,052 commits that comply with CCS. We excluded non-
English commit messages and applied the bot list suggested by
Tian et al. [39] to filter out commits generated by bots, such
as Dependabot [40]. As a result, our dataset included 88,704
developer-crafted conventional commits from 116 state-of-the-
art projects that explicitly adopt CCS as their commit message
convention. Figure 3 illustrates the distribution of commits
across various CCS types within our dataset.

IV. RQ1: HOW COMMON DO PROJECTS APPLY
CONVENTIONAL COMMITS SPECIFICATION?

A. Method

We answer this RQ from two aspects: repositories and
developers. From the repository perspective, we aim to know
how common projects officially declare their usage of Con-
ventional Commits Specification (CCS). When a repository
adopts CCS, it will specify this in its documentation, such as
contributing guideline [41], mandating developers to adhere
to CCS. From the developer perspective, we are interested in
exploring how many developers apply CCS as part of their
routine development practice, i.e., adhering to CCS in their
commit messages, no matter whether their contributed projects
mandate CCS or not.

As introduced in Section III, we have collected data from
116 projects that explicitly adopt CCS as their commit message
convention within their codebases. By analyzing their git
commit history, we traced the timeline of CCS adoption in these
projects to investigate the adoption trend. To better understand
how projects use CCS as their commit convention, we dive into
these 116 projects’ codebases and conduct a manual analysis to
explore how they incorporate CCS as their commit convention.

To assess the trend from the developers’ standpoint, we
hypothesize that if a developer uses CCS, they will write CCS-
compliant commit messages, regardless of whether the projects
they contributed to adopt CCS. Therefore, we measure the

5https://github.com/compilerla/conventional-pre-commit

2280

trend of CCS adoption among developers by calculating the
proportion of conventional commits within the total annual
commits of projects that have not yet adopted CCS. For this,
we considered the 3,058 projects mentioned in Section III,
excluding the 116 explicitly CCS-using projects, and then
randomly sampled 500 projects. To ensure these repositories
do not use CCS, we conducted additional keyword searches,
such as “conventional commit”. Similar to the retrieve method
used in Section III, we employed conventional-pre-commit to
identify conventional commits, thereby calculating the annual
proportion of conventional commits.

B. Results

2017 2018 2019 2020 2021 2022 2023
Year

0

20

40

60

80

100

120

Nu
m

be
r

1000 * Ratio of the projects
Number of the projects

Fig. 4: Application Trend of Conventional Commits
Specification in Projects

Figure 4 shows the number of projects applying CCS from
2017 to 2023. We also calculated the proportion of projects
applying CCS among all the 3,058 projects we selected from
seven prominent programming languages. We can see that an
increasing number of state-of-the-art open-source projects are
adopting the CCS, exhibiting a consistent growth rate annually.
Specifically, in 2023, 116 out of 3,058 most popular projects
officially announced their adoption of CCS, which is still
increasing stably. We took a close look at the 116 projects
and categorized two modes of CCS usage within the open-
source community: Document Declaration and Integrated with
Automatic Tools. We introduce the two modes as follows:

a) Document Declaration (#109): In this mode, projects
explicitly state in their documentation that they use CCS
as their commit message convention and require developers
to follow CCS when submitting their commits. The most
common documentation are contributing guidelines, changelogs,
and GitHub PR templates. Of the 109 projects, 66 directly
state in their contributing guidelines the necessity to adhere
to CCS standards by providing a link to the CCS. For
instance, the CONTRIBUTING.md of goreleaser [42] state:

“Commit messages should be well formatted, and to make that
“standardized”, we are using Conventional Commits. You can
follow the documentation on their [website](URL).” Besides,
43 (out of the 109) projects go further by offering detailed
explanations in their contributing guidelines, such as providing

explanations for CCS types to aid developers in understanding
CCS, as in the case of react-navigation [43].

b) Integrated with Automatic Tools (#64): In this mode,
projects utilize various automation tools with CCS. Commonly
used tools include GitHub Actions, commit lint [10], and git-
cliff [7]. For example, hyperswitch [44] checks if PR titles
(which will be the default commit messages after a squash
merge [45]) adhere to CCS in their GitHub actions CI/CD.
Among the 109 projects that explicitly state the use of CCS in
their documentation, 57 projects have adopted some automation
tools for checks. Seven projects adopted automation tools
without an explicit declaration.

2017 2018 2019 2020 2021 2022 2023
Year

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

Conventional Commits Ratio (Applied)
Conventional Commits Ratio (Not Applied)

Fig. 5: Application Trend of Conventional Commits
Specification in Developers’ Commits

Figure 5 presents the annual proportion of commits con-
forming to the CCS format out of all commits produced from
2017 to 2023. As expected, we can see a growing trend in the
percentage of CCS-compliant commits within projects adopting
the standard (indicated by the red line). By 2023, nearly 70%
of the commits in these repositories were in line with the
CCS format. Notably, even in projects where developers are
not required to follow CCS, we also see an upward trend in
the proportion of CCS-compliant commits (represented by the
green line). This proportion grew from almost zero in 2017 to
nearly 10% in 2023. This suggests that an increasing number
of developers are beginning to adopt CCS as part of their
development practices.

Summary for RQ1: The Conventional Commits
Specification (CCS) has gained increasing popularity
among open-source projects and developers. On GitHub,
a growing number of popular projects are adopting the
CCS as their commit convention. In projects that have
not adopted CCS, approximately 10% of the commits
submitted by developers in 2023 adhered to CCS. There
are two modes of CCS usage in open-source projects:
explicitly requiring developers to adhere to CCS in
documentation, and using automation tools to enforce
CCS compliance.

2281

V. RQ2: WHAT CHALLENGES DO DEVELOPERS FACE WHEN
CLASSIFYING COMMITS INTO CCS TYPES?

A. Method

The Conventional Commits Specification (CCS) hosts a
repository on GitHub [9], where users typically report issues
when encountering problems with CCS. As of December
15, 2023, the CCS repository comprises 194 issues, with
70 open and 124 closed. These issues are an important
source for us to mine challenges developers encountered when
classifying commits with CCS. Besides, we also considered
another important source, i.e., Stack Overflow, a prominent
online question-and-answer site for computer programming.
Specifically, we analyze the top 100 questions most relevant
to the keyword “conventional commits”. We first conducted a
manual annotation process on the aforementioned sources to
identify the GitHub issues and Stack Overflow questions that
are specific to the challenges developers face when classifying
commits into CCS types. Subsequently, for the issues or
questions identified, we employ thematic analysis, a widely-
used qualitative analysis method [46], to categorize the types of
challenges developer encountered based on their characteristics.

1) Data Annotation: We conducted the annotation of the
194 CCS-related issues and 100 Stack Overflow questions
as follows: The first two authors independently conducted a
thorough review of each GitHub issue and Stack Overflow
question. The objective was to ascertain whether these issues
and questions were pertinent to the challenges developers face
in classifying commits into CCS types. For every GitHub issue,
we considered the conversations between the issue reporter and
other contributors. Similarly, for each Stack Overflow question,
both the questions and their respective answers were examined.
In instances where there was a discrepancy in the annotations
between the two authors, a third author was brought in to serve
as an arbitrator.

2) Thematic Analysis: Upon completing the annotation
phase, we identified 43 GitHub issues and 9 Stack Overflow
questions that are specific to developers’ challenges when
classifying commits. Specifically, the total views of these
identified Stack Overflow questions exceed 73,0006, suggesting
that the challenges are not limited to a small subset of
developers. Subsequently, we employed thematic analysis to
extract the categories of the challenges. Thematic analysis [46]
is a technique for examining semantic data, involving pattern
identification to uncover themes. Specifically, our thematic
analysis procedure was as follows:

1) Perform an in-depth review of the issues and questions
related to developers’ problems of classifying commits to
comprehend the challenges developers face.

2) Re-examine these issues and questions to generate initial
codes.

3) Analyze the initial codes systematically, grouping those
that indicate similar challenges. During this stage, we
assigned aggregated themes to these grouped codes.

6Since GitHub issues do not provide data about their page views, we take
Stack Overflow questions as a proxy.

4) Review and refine these initial themes, merging those with
overlapping meanings for clarity and conciseness.

5) Establish the final set of themes applicable to all reviewed
issues and questions.

To minimize bias, the first two authors independently conducted
steps 1 to 4. We also convened multiple meetings to resolve
discrepancies and finalize the themes (step 5). Further details
are available in our online appendix [38].

B. Results

1) Identified Challenges: Through thematic analysis, we
identified four distinct categories of challenges developers
have encountered when using the Conventional Commits
Specification (CCS), i.e., (1) Requests for changing types, (2)
Requests for adding type aliases, (3) Confusion about which
type to use, and (4) Request for comprehensive definition.

a) Requests for changing types (#9, 17.3%): There are
9 instances of 52 (17.3%) identified issues or problems that
fall under this category. In this category, developers suggested
introducing new types (#8) or removing existing ones (#1), to
meet the specific needs of their projects or personal preferences.
The requested types can be classified into two categories:
management and customization. Management types pertain
to actions that help manage the codebase, such as introducing
“wip” type for half-finished commits or “revert” type for
commits created by git revert operations. Customization types
are specific to the nature of the commit, like adding a “security”
type to label commits that address security-related bug fixes.
While both involve introducing new types, management focuses
on workflow control, whereas customization emphasizes the
essence of commits. One issue raised was the suggestion to
remove the “chore” type as claimed that its definition (e.g.
“daily work”) is too broad and leads to misuse.

b) Requests for adding type aliases (#10, 19.2%): This
category encompasses challenges developers face regarding the
naming of types, often stemming from personal preferences.
Developers have requested the provision of aliases for certain
types. For instance, some developers proposed using “patch”
as an alias for “fix”, or “feature” for “feat”. There was also
confusion and debate over the choice of “docs” instead of “doc”
as a type name for documentation changes.

c) Confusion about which type to use (#30, 57.7%):
This category represents the most common challenge, where
over half of the issues and Stack Overflow questions are
related to developers’ confusion about conventional commit
types. This confusion is divided into practical and theoretical
aspects. Practically, developers are unsure about the appropriate
type for certain scenarios not covered or explicitly defined
by CCS (#22), such as what types to use when updating a
git sub-module or making an initial commit. Theoretically,
developers grapple with understanding the definitions of types
(#8). Notably, CCS does not provide a definitive list of type
definitions but refers users to the Angular project’s definitions
[9]. This reliance leads to debates and confusion based on
Angular’s definitions [4]. For instance, there is uncertainty
about whether the “feat” type should be used for user-oriented

2282

features or developer-oriented features. Additionally, according
to Angular’s definition, “refactor” is defined as “A code change
that neither fixes a bug nor adds a feature” [4], which is too
broad to cause overlap confusion with other types like “style”
(code style related changes) and “perf” (performance related
changes), as commits conforming to “style” and “perf” might
also fit the “refactor” definition.

d) Request for comprehensive definition (#3, 5.8%):
With the prevalent confusion about commit types, some
developers have requested a comprehensive list of definitions
for each CCS type. The CCS community has recognized
this challenge and initiated discussions on July 14, 2020, to
introduce a definitive list. However, until the date of this study,
these discussions remain open and have not seen significant
progress7.

2) Proposed Solution: The most common challenge identi-
fied is CCS’s lack of a clear definition list for each type [9],
relying instead on the Angular project’s definitions [4], which
are too broad and have overlaps, leading to confusion. To move
this forward, we provide more detailed and less overlapping
type definitions, thereby reducing confusion. We use the
Angular project’s definitions as a foundation [4], acknowledging
their extensive use in CCS despite their broad and overlapping
aspects. As detailed in Section IV-B, our investigation indicates
that out of the projects employing CCS, 43 provide additional
elucidations in their contributing guidelines, some including
CCS types explanation. To render our definitions more concrete
and illustrative, we meticulously reviewed the contributing
guidelines of these 43 projects, aiming to integrate more
examples and use cases into the Angular framework’s existing
definitions.

In this study, we will not consider the problems suggesting
introducing new types in the first category of challenges
identified, nor the challenges of the second category, which
propose the incorporation of aliases. (The rationale for this will
be discussed in Section VIII). Specifically, our study addresses
three types of confusion identified above: (1) whether the
“feat” type should target users or developers; (2) the distinction
between “refactor” and other types; and (3) the potential
removal of the “chore” type due to misuse. While varying
in definitions, the concept of a feature generally leans towards
a user-centric perspective [47, 48]. For instance, Chen et al.
[49] describe features as “a product characteristic from user
or customer views”. However, determining a commit’s user
or developer orientation can be challenging for individuals
not deeply familiar with the project’s context. In this study,
to be compatible with automatic commit classification, we
include both user and developer-oriented features under “feat”,
while strongly recommending developers use specific markers
to differentiate them (e.g., “feat+” for user-oriented, “feat” for
developer-oriented features). Refactoring, theoretically, involves
altering a program’s structure without changing its functionality
to enhance metrics like readability and maintainability [50, 51].
From this perspective, “style” (code style improvements) is a

7github.com/conventional-commits/conventionalcommits.org/issues/283

subset of “refactor”, and “perf” (performance enhancements)
can also be perceived as overlapping with “refactor” since
they both do not change a program’s functionality. However,
according to [51], “perf” is not considered a “refactor”. We
advocate for specificity in type classification and propose to
explicitly exclude “style” and “perf” from “refactor”. Regarding
the “chore” type, its broad definition (e.g., “daily work”8) led
to its removal by the Angular team. However, it remains widely
used in the community. In our study, we retain the “chore”
type as “other”, covering commits not encompassed by current
types, such as resolving merge conflicts or removing debug
code. The definitions of CCS types in this study are as follows:

1) feature (feat/feat+): Code changes aim to introduce new
features to the codebase, encompassing both internal and
user-oriented features.

2) fix: Code changes aim to fix bugs and faults within the
codebase.

3) performance (perf): Code changes aim to improve per-
formance, such as enhancing execution speed or reducing
memory consumption.

4) style: Code changes aim to improve readability without
affecting the meaning of the code. This type encompasses
aspects like variable naming, indentation, and addressing
linting or code analysis warnings.

5) refactor: Code changes aim to restructure the program
without changing its behavior, aiming to improve main-
tainability. To avoid confusion and overlap, we propose
the constraint that this category does not include changes
classified as “perf” or “style”. Examples include enhanc-
ing modularity, refining exception handling, improving
scalability, conducting code cleanup, and removing depre-
cated code.

6) documents (docs): Code changes that modify documenta-
tion or text, such as correcting typos, modifying comments,
or updating documentation.

7) test: Code changes that modify test files, including the
addition or updating of tests.

8) ci: Code changes to CI (Continuous Integration) configu-
ration files and scripts, such as configuring or updating
CI/CD scripts, e.g., “.travis.yml” and “.github/workflows”.

9) build: Code changes affecting the build system (e.g.,
Maven, Gradle, Cargo). Change examples include updating
dependencies, configuring build configurations, and adding
scripts.

10) chore: Code changes for other miscellaneous tasks that
do not neatly fit into any of the above categories.

It is important to recognize that these CCS types bifurcate
commits based on two dimensions: purpose (i.e., the motivation
behind making a code change) and object (i.e., the essence
of code changes that have been made). Here, “perf”, “style”,
“feat”, “refactor”, and “fix” are categorized as purpose types,
whereas “docs”, “test”, “ci”, and “build” fall under object types.
Consequently, there is potential for overlap between purpose
and object types. For instance, commits may involve refactoring

8https://github.com/go-kratos/kratos/

2283

purposes within the test object or fixing issues purpose in the CI
object. To mitigate these overlaps, this study prioritizes purpose
over object. That is to say, in cases of overlap, the commit
type is determined by its purpose. For example, a commit
that refactors test code would be categorized as a “refactor”
commit. Meanwhile, this is also why we distinguish between
“refactor” and “perf”: if the intent is to boost performance, the
changes are classified as “perf”; if the goal is to make the
software easier to understand and modify, then the changes are
recognized as “refactor” [51].

Summary for RQ2: When developers adopt the Con-
ventional Commits Specification (CCS), they encounter
several challenges. The most common challenges re-
lated to types, faced by approximately 60% of users,
stem from the lack of a clear and explicit list of
definitions for CCS types. This leads to confusion over
type selection and understanding. To move this forward,
we combined insights from industrial practices and a
review of academic literature to provide a more precise,
clear, and less-overlapping definition list for CCS.

VI. RQ3: CAN WE AUTOMATICALLY CLASSIFY COMMITS
INTO CCS TYPES?

A. Method

In this RQ, we aim to automate the classification of
commits into the types we defined in Section V-B. This
more fine-grained classification task presents a more nuanced
challenge compared to earlier studies that categorized commits
into three basic classes: perfective, corrective, and adaptive
[3, 11, 12, 13, 14, 15]. The categorization into ten distinct
CCS types requires a deeper understanding of code changes.
Recent advancements in Large Language Models (LLMs) have
demonstrated significant potential in code understanding tasks,
as detailed in Section II-C. Leveraging these advancements,
we utilize CodeLlama [37], a sophisticated LLM tailored
for code-related tasks. Developed and open-sourced by Meta,
CodeLlama has achieved state-of-the-art performance across
multiple benchmarks [37]. To adapt CodeLlama for this
task, we first created an instruction dataset and fine-tuned
CodeLlama using a LoRA-based methodology (described in
Section II-C). The model’s performance was evaluated against
several baselines, including OpenAI’s latest model, ChatGPT4
[19], as well as the previous three-category baseline.

1) Dataset Labeling: Section III details our collection of
a dataset comprising 88,704 conventional commits crafted
by developers from 116 popular open-source projects. While
these commits contain <type> field in which developers self-
classified their code changes, we find a prevailing confusion
in understanding the CCS types among some developers (see
more details in Section V-B). Such confusion may lead to
the misclassification of commit types; Figure 2 shows a real
example. Besides, we have improved the type definitions to
address several identified challenges. Therefore, we manually

annotated a dataset in alignment with our definitions from
Section V-B for model fine-tuning and testing.

We employed stratified sampling on our dataset in Section
III, randomly selecting 200 commits for each of the 10
CCS types, resulting in 2,000 commits. The first and third
authors independently annotated these 2,000 commits according
to our proposed definition list in Section V-B. Including
various modification types within a single commit is typically
considered poor practice, compromising code maintainability
[52, 39]. Additionally, adhering to the principle that a commit
should ideally represent a single CCS type, we excluded
commits encompassing multiple types during the annotation
process. For categories with fewer than 200 commits after
annotation, we conducted additional random sampling and
labeling until each category had 200 commits. After labeling,
the two annotators have disagreements on 79 commits (about
4%), resulting in a Cohen’s kappa coefficient [53] of 0.9,
which indicates a high level of agreement. Discrepancies were
addressed in several meetings, with a third author serving as
an arbitrator when consensus was not reached. Ultimately, we
obtained a dataset of 2,000 manually annotated commits, with
each CCS type represented by 200 commits. Subsequently, for
each commit in our dataset, we removed the <type> field
from its commit message, converting it into a normal commit
message. This adaptation is necessary for our task of classifying
all commits into CCS types, especially considering that the
majority of commits (approximately 90% in 2023, as detailed
in Section IV-B) do not contain the <type> field in their
messages. This adjustment also ensured that the model learned
to classify commits based on the code changes and the content
of normal commit messages rather than depending on the
<type> field.

2) Baselines: While previous studies have focused on the
three-category classification of commits [3, 11, 12, 13, 14, 15],
our research pioneers the exploration into a ten-category con-
ventional commits classification. The methods from previous
works are not specifically designed for CCS, which could pose
challenges when directly applied to CCS classification. The
BERT model [54] is widely used in prior studies [11, 13, 15];
Ghadhab et al. [11] employed a BERT-based approach to
encode commit messages, achieving state-of-the-art perfor-
mance with an accuracy of approximately 78% when classifying
commit into Swanson’s proposed categories [2]. Therefore, we
chose BERT as a baseline. Our approach employs the Large
Language Model (LLM), i.e., CodeLlama [37], and thus we
include comparative analyses with Llama2 [30] and ChatGPT4
[19]. Llama2 is Meta’s latest open-source LLM widely used
in academic research [30], while ChatGPT4 represents the
most advanced LLM developed by OpenAI [19]. Our study
utilizes the CodeLlama 7B model, encompassing roughly 7
billion parameters. Llama2, used for comparison, is also based
on a 7-billion-parameter framework. While OpenAI has not
publicly disclosed the exact parameter count of ChatGPT4, it
is significantly higher than ChatGPT3.5, which possesses 175
billion parameters [55].

2284

3) Prompt Design: Large Language Models (LLMs) are
predominantly prompt-driven [56]. In designing an effective
prompt, we adhered to the Input Semantics Prompt Pattern
proposed by White et al. [56]. As depicted in Figure 6, our
prompt incorporates the type definitions provided in Section
V-B. These definitions (<type definitions>) guide the LLM in
classifying commits based on their messages and code changes.
We utilized this prompt to fine-tune both CodeLlama [37] and
Llama2 [30]. For ChatGPT4 [19], which is proprietary, we
leveraged OpenAI’s API9 to send the test dataset to ChatGPT4
based on this prompt, retrieving the generated labels to assess
its performance.

Sha: cd289c5b70177f20cf4f26b7b41a3958bddebf6d
Date: Sep 14,2021

feat(storage): remove unnecessary lines from
verify-wal test

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

fix: prevent racing of requests

Introduce a request id and reference to latest
request. Dismiss incoming responses other than
from latest request.

Reviewed-by: Z
Refs: #123

You are a commit classifier based on commit
message and code diff. Please classify the given
commit into one of the ten categories: docs, perf,
style, refactor, feat, fix, test, ci, build and
chore. The definitions of each category are as
follows:

<type_definitions>

- The given commit message <commit_message>

- The given commit diff: <commit_diff>

Fig. 6: Prompt Template

4) Implementation Details: We implemented our approach
using the HuggingFace transformers framework10. The dataset
was stratified and sampled according to the CCS types, and
then divided into training, validation, and test sets in a 7:1:2
ratio. All models were trained on the training set, with the best-
performing model on the validation set selected for testing on
the test set. The learning rate was set to 1×10−4, with a batch
size of 20 and a token length limit of 1,024. We employed the
AdamW optimizer [57] and trained our model for five epochs.
The hyperparameters of the Low-Rank Adaptation (LoRA) [36]
were set with r = 8 and α = 32. For evaluation purposes, given
the nature of this task as a classification task, we employed
widely recognized metrics: accuracy, macro precision, macro
recall, and macro F1 score [58]. These macro metrics are
calculated by computing the metrics for each category and then
taking their arithmetic mean. In addition, we report precision,
recall, and F1 scores for each category. Due to space constraints,
we provide detailed results of these evaluations in our online
appendix [38].

All experiments were conducted on a server equipped with
two 24G NVIDIA GeForce RTX 3090 GPUs, an Intel(R)
Xeon(R) Silver 4310 CPU, and running the Ubuntu 20.04.2
LTS operating system.

B. Results

The results of our comparative analysis are presented in
Table II, with the highest scores for each metric emphasized
in bold. Detailed comparisons of precision, recall, and F1
scores for each of the ten conventional commit types are

9https://platform.openai.com/docs/api-reference/chat/create
10https://github.com/huggingface/transformers

TABLE II: Classification performance against baselines

Metrics BERT ChatGPT4 Llama2 Our Approach

Macro precision 54.32% 74.86% 75.43% 77.95%
Macro Recall 54.25% 69.50% 75.25% 76.50%
Macro F1 52.80% 69.90% 74.97% 76.41%
Accuracy 54.25% 69.50% 75.25% 76.50%

available in our online appendix [38]. The table shows that
our approach surpasses all baselines in both macro metrics and
accuracy. When compared to earlier methods that categorized
commits into three classes, our approach, in the fine-grained
scenario of ten classifications, shows an approximate 22%
increase in both accuracy and macro F1 scores. Despite our
approach having a parameter count of only 7 billion, which
is far less than 4% of that of ChatGPT4 (whose parameter
count significantly surpasses ChatGPT3.5’s 175 billion [55]),
our lightweight model demonstrates a near 7% improvement in
accuracy and macro F1 over ChatGPT4. This result suggests
that our approach is both cost-efficient and accurate and
capable of running on less expensive, energy-efficient devices.
Compared to the fine-tuned Llama2, our approach reveals
a slight performance improvement, potentially attributable
to the additional code-related data pretraining conducted by
CodeLlama built upon Llama2’s weights [37].

Regarding the specific performance of our approach across
various conventional commit types, it is observed that the
“chore” and “refactor” categories demonstrate weaker perfor-
mances, with F1 scores of 53.97% and 60.61%, respectively. In
contrast, the remaining categories all exceed 68% in F1 scores,
with the “test” category achieving the highest score of 90.91%.
Detailed findings can be found in our online appendix [38].
The relatively poor performance of the “chore” and “refactor”
categories may be attributed to our definitions, wherein “chore”
encompasses miscellaneous types, requiring the model to
consider the remaining nine types to determine if a commit
falls under the “chore” category. Similarly, “refactor” is defined
as refactoring excluding “perf” and “style,” necessitating
additional assessment by the model. As a result, these two
categories may require more detailed evaluation from the model,
leading to their lower performance. This is a potential area for
improvement in the future.

Summary for RQ3: Our approach demonstrates sig-
nificant potential in conventional commits classifica-
tion, surpassing all compared baselines. Compared
to traditional three-category classification methods,
our approach exhibits an over 22% improvement in
accuracy and macro F1 scores. Relative to ChatGPT4,
our method is more cost-efficient and exhibits a
performance advantage of nearly 7%.

VII. IMPLICATIONS

This section discuss the implication of conventional commit
classification for developers and researchers.

2285

Implications for Developers. CCS plays a crucial role in
supporting numerous automated tools in industry practices, such
as automatic semantic version bump11, changelog generation12,
and release note generation [7]. All these tools depend on
the machine-readable <type> field present in conventional
commit messages to extract categories of commits. For example,
git-cliff [7], a widely-used tool for automatic changelog
generation, organizes commit messages into different change
categories by identifying the <type> field in conventional
commit messages, thereby enabling the automated creation of
changelogs. Furthermore, as revealed in our RQ2, developers
may face challenges in selecting the appropriate types due
to the absence of detailed type definitions in the CCS. Our
automatic classifier, developed in RQ3, has shown promising
potential in the classification of conventional commits. On
one hand, this classifier can take any commit as input, which
may enable the transformation of older, non-CCS-based history
commits into CCS-compliant commits, thereby supporting CCS
automation toolchains. Table II shows promising results for
CCS-based commits, but further experiments are needed on
non-CCS-based commits. On the other hand, it can recommend
suitable types for developers, enhancing efficiency and reducing
error likelihood. For projects adopting CCS as their commit
message convention, our classifier can also be integrated into
CI/CD pipelines. It automatically checks whether the commits
submitted by developers are correctly categorized, thereby
improving the quality of conventional commit messages.

Implications for Researchers. In the academic sphere, tradi-
tional three-category commit classification has been adopted as
a tool for empirical research in software engineering, especially
for understanding patterns in commits and developer behavior
[59, 17, 39]. For instance, Zhang et al. utilized a commit
classifier proposed by dos Santos and Figueiredo [60], which
is based on Swanson’s definitions, to identify the type of work
carried out in commits while comparing paid and volunteer
developers in the Rust community [59]. Our study introduces
an automatic classifier capable of categorizing commits into
ten more fine-grained categories with promising accuracy.
This advancement can provide these empirical studies with
a more nuanced set of features regarding commits, poten-
tially facilitating more insightful findings. Additionally, many
recent studies have focused on commit message generation
[61, 62, 26, 27, 63]. However, these studies primarily target
normal commit message generation without attempting to
adhere to specific conventions like CCS. One of the challenges
in generating conventional commit messages, as opposed to
normal commit messages, is the generation of the <type>
field. Our conventional commit classification approach has the
potential to improve the generation of CCS-compliant commit
messages.

VIII. THREATS TO VALIDITY

This section discusses potential internal and external threats
to the validity of our study.

11https://github.com/googleapis/release-please-action
12https://github.com/cocogitto/cocogitto

Internal Validity concerns the threats to how we perform our
study. The first threat lies in our sampling strategy, specifically
using 200 commits per type. We found that developers may
misclassify commits due to their confusion about CCS types,
and our proposed type definitions slightly differ from previous
ones (with “chore” types as “other”), necessitating manual
dataset annotation for model training and testing. The choice
of 200 commits for each type may not be optimal, but it
is a practical compromise given the constraints of manual
annotation in terms of time and effort. Manual annotation
introduces a subjective element, posing a threat to validity.
To mitigate this, two authors independently labeled commits,
and several meetings were held, with the third author acting
as an arbitrator for any inconsistent labeling. The agreement
level of 0.9 is high, indicating a high level of consistency in
the labeling process. Another threat is that our study does
not consider requests to introduce new types (Section V-B).
This is because CCS advises developers to create new types
tailored to their specific needs. Instead, we focus on the most
commonly used types as listed in CCS [9]. Furthermore, we do
not consider requests for aliases to types because these requests
are limited to individual preferences and are not directly related
to the essence of commit types.

External Validity pertains to the threats that might impact
the generalizability of our findings. Our study only focuses on
the popular open-source projects on GitHub when investigating
the trend of CCS adoption (Section IV). Given the time and
computational resource constraints, examining all projects on
GitHub is not feasible. Consequently, our research begins
with these popular projects, underpinned by the hypothesis
that such projects, owing to their larger developer base and
more frequent updates, will likely have more comprehensive
contributing guidelines. This, in turn, increases the probability
of these projects adopting CCS to standardize contributors’
commits. Our findings suggest a growing adoption of CCS
among these projects, offering insights into broader trends on
GitHub. Additionally, despite our efforts to develop a clearer
and less overlapping type definition list compared to previous
versions [4], based on industry practices and a thorough
literature review (Section V-B), our proposed type definition
list is still relatively incremental and may not encompass
all commit activities and could still contain overlaps. This
limitation opens a potential avenue for future research to further
refine and evolve the conventional commits specification to
align with modern software development practices. As seen
in Figure 3 (Section III), the commit types in our dataset are
not uniformly distributed. However, to train, validate, and test
our model in a balanced manner, we constructed a dataset
with evenly distributed labels. This approach might lead to
slight differences in classification performance in real-world
applications compared to the performance reported in this
paper.

IX. CONCLUSION

Conventional Commits [9], as a specification for adding
both human and machine readable meaning to commit mes-

2286

sages, is increasingly gaining popularity among open-source
projects and developers. The machine-readable type of these
commits enables numerous automation tools, such as automatic
changelog or release note generation, many of which have
been integrated into production applications. However, current
studies predominantly focus on the classification framework
established by Swanson in 1976 [2], which is not extensively
utilized by developers and projects today. To bridge this gap,
our study conducts a preliminary study of CCS, encompassing
its application status and the challenges developers encounter
when using it. We observe a growing popularity of CCS,
yet developers do misclassify commits into incorrect CCS
types, attributable to the absence of a clear and distinct
definition list for each type. We have developed a more
precise and less overlapping definition list to address this,
grounded in industry practices and literature review. To assist
developers in classifying conventional commits, we propose
an approach for automated conventional commit classification.
Our evaluation demonstrates that our approach outperforms a
series of baselines as well as ChatGPT4, showcasing promising
potential for both industrial and academic applications.

X. DATA AVAILABILITY

To support future replication and research, we have made
the data, scripts, and additional resources utilized in this
study available online. These materials can be accessed at the
following URL: https://doi.org/10.6084/m9.figshare.26507083.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foun-
dation of China Grant (62141209, 62202048, and 62232003).

REFERENCES

[1] N. N. Zolkifli, A. Ngah, and A. Deraman, “Version control
system: A review,” Procedia Computer Science, vol. 135,
pp. 408–415, 2018.

[2] E. B. Swanson, “The dimensions of maintenance,” in
Proceedings of the 2nd international conference on
Software engineering, 1976, pp. 492–497.

[3] Mockus and Votta, “Identifying reasons for software
changes using historic databases,” in Proceedings 2000 In-
ternational Conference on Software Maintenance. IEEE,
2000, pp. 120–130.

[4] Angular, “Commit guidelines for angular.” [Online].
Available: https://github.com/angular/angular/blob/main/
CONTRIBUTING.md#-commit-message-format

[5] JSHint, “Commit guidelines for jshint.” [On-
line]. Available: https://github.com/jshint/jshint/blob/main/
CONTRIBUTING.md#commit-message-guidelines

[6] Ember.js, “Commit guidelines for ember.” [Online].
Available: https://github.com/emberjs/ember.js/blob/main/
CONTRIBUTING.md

[7] “git-cliff,” https://github.com/orhun/git-cliff, accessed:
2024-03-15.

[8] “semantic-release,” https://github.com/semantic-
release/semantic-release, accessed: 2024-03-15.

[9] “Conventional commit specification.” [Online]. Available:
https://www.conventionalcommits.org/en/v1.0.0/

[10] “commitlint,” https://github.com/conventional-changelog/
commitlint.

[11] L. Ghadhab, I. Jenhani, M. W. Mkaouer, and M. B. Mes-
saoud, “Augmenting commit classification by using fine-
grained source code changes and a pre-trained deep neural
language model,” Information and Software Technology,
vol. 135, p. 106566, 2021.

[12] S. Levin and A. Yehudai, “Boosting automatic commit
classification into maintenance activities by utilizing
source code changes,” in Proceedings of the 13th In-
ternational Conference on Predictive Models and Data
Analytics in Software Engineering, 2017, pp. 97–106.

[13] J. Y. D. Lee and H. L. Chieu, “Co-training for commit
classification,” in Proceedings of the Seventh Workshop
on Noisy User-generated Text (W-NUT 2021), 2021, pp.
389–395.

[14] S. Hönel, M. Ericsson, W. Löwe, and A. Wingkvist,
“Using source code density to improve the accuracy
of automatic commit classification into maintenance
activities,” Journal of Systems and Software, vol. 168,
p. 110673, 2020.

[15] M. U. Sarwar, S. Zafar, M. W. Mkaouer, G. S. Walia,
and M. Z. Malik, “Multi-label classification of commit
messages using transfer learning,” in 2020 IEEE Inter-
national Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2020, pp. 37–42.

[16] T. Preston-Werner, “Semantic versioning 2.0.0,” 2013.
[Online]. Available: https://semver.org/

[17] S. Amreen, A. Karnauch, and A. Mockus, “Developer
reputation estimator (dre),” in 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE). IEEE, 2019, pp. 1082–1085.

[18] Y. Zhang, K.-J. Stol, H. Liu, and M. Zhou, “Corporate
dominance in open source ecosystems: a case study of
openstack,” in Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp.
1048–1060.

[19] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[20] J. Wu, W. Xu, K. Gao, J. Li, and M. Zhou, “Characterize
software release notes of github projects: Structure,
writing style, and content,” in 2023 IEEE International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2023, pp. 473–484.

[21] T. Heričko and B. Šumak, “Commit classification into
software maintenance activities: A systematic literature
review,” in 2023 IEEE 47th Annual Computers, Software,
and Applications Conference (COMPSAC). IEEE, 2023,
pp. 1646–1651.

[22] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt,
“Automatic classication of large changes into maintenance

2287

categories,” in 2009 IEEE 17th International Conference
on Program Comprehension. IEEE, 2009, pp. 30–39.

[23] B. Fluri, M. Wursch, M. PInzger, and H. Gall, “Change
distilling: Tree differencing for fine-grained source code
change extraction,” IEEE Transactions on software engi-
neering, vol. 33, no. 11, pp. 725–743, 2007.

[24] S. Gharbi, M. W. Mkaouer, I. Jenhani, and M. B. Mes-
saoud, “On the classification of software change messages
using multi-label active learning,” in Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing,
2019, pp. 1760–1767.

[25] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng,
M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang,
and M. Zhou, “CodeBERT: A pre-trained model
for programming and natural languages,” in Findings
of the Association for Computational Linguistics:
EMNLP 2020, T. Cohn, Y. He, and Y. Liu, Eds.
Online: Association for Computational Linguistics,
Nov. 2020, pp. 1536–1547. [Online]. Available: https:
//aclanthology.org/2020.findings-emnlp.139

[26] T. H. Jung, “CommitBERT: Commit message generation
using pre-trained programming language model,” in
Proceedings of the 1st Workshop on Natural Language
Processing for Programming, 2021, pp. 26–33.

[27] M. Miksik, “Fine-tuning transformer models for commit
message generation and autocompletion,” January 2023.
[Online]. Available: http://essay.utwente.nl/94380/

[28] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,
Y. Min, B. Zhang, J. Zhang, Z. Dong et al., “A survey of
large language models,” arXiv preprint arXiv:2303.18223,
2023.

[29] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph,
S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Met-
zler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang,
J. Dean, and W. Fedus, “Emergent abilities of large
language models,” Transactions on Machine Learning
Research, 2022, survey Certification.

[30] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale
et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:2307.09288, 2023.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[32] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open
large language model for code with multi-turn program
synthesis,” in The Eleventh International Conference on
Learning Representations, 2023.

[33] C. S. Xia and L. Zhang, “Conversational automated
program repair,” arXiv preprint arXiv:2301.13246, 2023.

[34] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “Llama-
reviewer: Advancing code review automation with large
language models through parameter-efficient fine-tuning,”
in 2023 IEEE 34th International Symposium on Software

Reliability Engineering (ISSRE). IEEE, 2023, pp. 647–
658.

[35] M. Weyssow, X. Zhou, K. Kim, D. Lo, and H. Sahraoui,
“Exploring parameter-efficient fine-tuning techniques for
code generation with large language models,” arXiv
preprint arXiv:2308.10462, 2023.

[36] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-rank adaptation of
large language models,” in International Conference on
Learning Representations, 2022.

[37] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat,
X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin et al.,
“Code llama: Open foundation models for code,” arXiv
preprint arXiv:2308.12950, 2023.

[38] “Online appendix.” [Online]. Available: https://doi.org/10.
6084/m9.figshare.26507083

[39] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What
makes a good commit message?” in Proceedings of the
44th International Conference on Software Engineering,
2022, pp. 2389–2401.

[40] R. He, H. He, Y. Zhang, and M. Zhou, “Automating
dependency updates in practice: An exploratory study
on github dependabot,” IEEE Transactions on Software
Engineering, 2023.

[41] F. Fronchetti, D. C. Shepherd, I. Wiese, C. Treude,
M. A. Gerosa, and I. Steinmacher, “Do contributing files
provide information about oss newcomers’ onboarding
barriers?” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2023, pp. 16–28.

[42] “goreleaser,” https://github.com/goreleaser/goreleaser.
[43] “react-navigation,” https://github.com/react-navigation/

react-navigation.
[44] “hyperswitch,” https://github.com/juspay/hyperswitch.
[45] “Squash merge,” https://github.blog/changelog/2022-

05-11-default-to-pr-titles-for-squash-merge-commit-
messages/, accessed: 2024-03-15.

[46] D. S. Cruzes and T. Dyba, “Recommended steps for
thematic synthesis in software engineering,” in 2011 Inter-
national Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society, 2011, pp.
275–284.

[47] K. Lee, K. C. Kang, and J. Lee, “Concepts and guidelines
of feature modeling for product line software engineering,”
in International Conference on Software Reuse. Springer,
2002, pp. 62–77.

[48] A. Classen, P. Heymans, and P.-Y. Schobbens, “What’s
in a feature: A requirements engineering perspective,” in
International Conference on Fundamental Approaches to
Software Engineering. Springer, 2008, pp. 16–30.

[49] K. Chen, W. Zhang, H. Zhao, and H. Mei, “An approach
to constructing feature models based on requirements
clustering,” in 13th IEEE International Conference on
Requirements Engineering (RE’05). IEEE, 2005, pp.
31–40.

[50] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we

2288

refactor, and how we know it,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 5–18, 2011.

[51] M. Fowler, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 2018.

[52] K. Agrawal, S. Amreen, and A. Mockus, “Commit
quality in five high performance computing projects,” in
2015 IEEE/ACM 1st International Workshop on Software
Engineering for High Performance Computing in Science.
IEEE, 2015, pp. 24–29.

[53] J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and psychological measurement, vol. 20,
no. 1, pp. 37–46, 1960.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers for
language understanding,” in North American Chapter of
the Association for Computational Linguistics, 2019.

[55] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui,
Z. Zhou, C. Gong, Y. Shen et al., “A comprehensive
capability analysis of gpt-3 and gpt-3.5 series models,”
arXiv preprint arXiv:2303.10420, 2023.

[56] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C.
Schmidt, “A prompt pattern catalog to enhance prompt en-
gineering with chatgpt,” arXiv preprint arXiv:2302.11382,
2023.

[57] I. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” in International Conference on Learning
Representations, 2017.

[58] M. Hossin and M. N. Sulaiman, “A review on evaluation
metrics for data classification evaluations,” International
journal of data mining & knowledge management process,
vol. 5, no. 2, p. 1, 2015.

[59] Y. Zhang, M. Qin, K.-J. Stol, M. Zhou, and H. Liu, “How
are paid and volunteer open source developers different?
a study of the rust project,” in Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering, ser. ICSE ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online].
Available: https://doi.org/10.1145/3597503.3639197

[60] G. E. dos Santos and E. Figueiredo, “Commit classifica-
tion using natural language processing: Experiments over
labeled datasets,” in CIbSE, 2020, pp. 110–123.

[61] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and
D. Hao, “Fira: fine-grained graph-based code change
representation for automated commit message generation,”
in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 970–981.

[62] A. Eliseeva, Y. Sokolov, E. Bogomolov, Y. Golubev,
D. Dig, and T. Bryksin, “From commit message gen-
eration to history-aware commit message completion,”
in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2023,
pp. 723–735.

[63] Y. Zhang, Z. Qiu, K.-J. Stol, W. Zhu, J. Zhu, Y. Tian, and
H. Liu, “Automatic commit message generation: A critical
review and directions for future work,” IEEE Transactions
on Software Engineering, 2024.

2289

