
COLARE: Commit Classification via Fine-grained
Context-aware Representation of Code Changes

Qunhong Zeng
School of Computer Science & Technology

Beijing Institute of Technology
Beijing, China

qunhongzeng@bit.edu.cn

Yuxia Zhang‡
School of Computer Science & Technology

Beijing Institute of Technology
Beijing, China

yuxiazh@bit.edu.cn

Zeyu Sun
Institute of Software

Chinese Academy of Sciences
Beijing, China

szy @pku.edu.cn

Yujie Guo
School of Computer Science & Technology

Beijing Institute of Technology
Beijing, China

guoyujie@bit.edu.cn

Hui Liu
School of Computer Science & Technology

Beijing Institute of Technology
Beijing, China

liuhui08@bit.edu.cn

Abstract—Commit classification for maintenance activities is of
critical importance for both industry and academia. State-of-the-
art approaches either treat code changes as plain text or rely on
manually identified features. Directly applying the most advanced
model of code change representation into commit classification
faces two limitations: (1) coarse-grained diff comparison neglects
the distance of modified code lines; (2) missing key context
information of hunk modification and file categories. This study
proposes a novel classification model, COLARE, which compares
code changes at the hunk level, takes fine-grained features based on
categories of changed files, and aggregates with the representation
of commit messages. The evaluation results show that our model
outperforms state-of-the-art techniques by 7.24% and 7.35% in
accuracy and macro F1 score, respectively. We also manually
labeled a multi-language dataset and evaluated our approach,
The results further confirm that our approach achieves the best
performance over three baselines, including ChatGPT (3.5). The
evaluation of the ablation study demonstrates the effectiveness of
the major components in our technique.

Index Terms—Maintenance Activities, Commit Classification,
Fine-grained Code Change Representation

I. INTRODUCTION

To keep the hearts beating, software systems rely on continu-

ous changes to reflect new environments, business reorientation,

or modernization [12]. Version control systems (VCSs), such as

Git, serve as one critical infrastructure supporting effective team

collaboration and maintaining a meticulous, traceable history

of changes [36]. Developers perform different maintenance

activities on VCSs, such as fixing bugs or implementing

new features. The resulting code changes are commit to

version control systems. As evidence of the significant scale

of software development activities, the year 2022 witnessed

an astonishing number of approximately 800 million commits

made by developers worldwide.1

As the fundamental unit for representing software changes,

commits provide an efficient means of tracking changes

‡ Corresponding Author
1https://bitbucket.org/swsc/overview/src/master/

made to code repositories [32]. Researchers have categorized

commits into various maintenance activity types, with the

most commonly used typology comprising three categories:

corrective, perfective, and adaptive [40, 32]. Categorizing

commits into maintenance activities is of critical importance.

In the realm of industry, classified commits help support

cost-effective management and evolution of software projects

[13, 40, 28]. For instance, software projects typically construct

their release notes by mainly checking and categorizing change

types [46], such as what new features were implemented and

which bugs were fixed. Automatically classifying commits into

maintenance activities can significantly improve the efficiency

of preparing release notes [23]. Within the sphere of research,

considering commit categories allows for measuring developer

capabilities in a finer grained, instead of directly calculating

commit numbers [3]. Additionally, it facilitates characterizing

companies’ performance in the domain of open source software

[48, 49].

A commit typically comprises the code changes (known as

diff ) and an accompanying descriptive text (known as message)

that provides context for the changes made. Based on these

components, various studies have proposed approaches for

automatically classifying commits into maintenance activities.

The first research stream of classifying commits involves using

keywords (e.g., “fix”) in commit messages [32, 2, 18, 28]

and/or extracting features from the code diff (e.g., the number

of added code lines) [28, 18]. As natural language processing

(NLP) techniques advanced, the second stream of work started

applying these techniques to enhance commit classification

performance. For instance, Ghadhab et al. [13] employed BERT

[8] to extract features from commit messages, while Lee et al.

[27] utilized CodeBERT [10] to directly encode code diffs.

Leveraging pre-trained language models may present commit

messages well but has limitations in extracting features from

code changes, because: 1) current approaches treating diff as

plain text fail to learn the hierarchical structure information
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from code diff; and 2) they do not explicitly seize the code

changes between the old and new versions, which determine

the categories of maintenance activities by nature. Thus, it is

tempting to leverage state-of-the-art code change presentation

technique, i.e., CC2Vec [19], to address the two limitations.

CC2Vec models the hierarchical structure of a code change

by the attention mechanism and uses multiple comparison

functions to identify the differences between the old and

new versions explicitly. However, CC2Vec compares code

changes on a coarse-grained level, i.e., directly comparing two

embedding vectors representing removed and added lines in

a modified file, without paying attention to the distances of

the changed lines. Git uses hunk to represent a cohesive set

of modifications [11]. Modified lines in different hunks may

have limited relation, and the overall comparison of added and

deleted lines can introduce noise (see Section II-A for more

details). Moreover, CC2Vec misses key context information of

code changes, i.e., the type of modified files and the contextual

information of changed lines in each hunk, which may be

unnecessary to code representation but of critical importance

to commit classification (see Section II-B for more details).

In this study, we propose a novel commit classification

model, COLARE, which extracts features from code changes

at the hunk level while considering the context of code changes.

Moreover, we enhance our approach with fine-grained features

based on the categories of modified files and then aggregate

them with the representation of commit messages. Our model

is the first approach that boosts the performance of commit

classification by combining the strengths of commit messages,

code diff, and file category features.

We conduct extensive evaluations to explore the effectiveness

of COLARE. We first compare COLARE with the approach

proposed by Ghadhab et al. [13] on their dataset, because this

baseline approach is specific to Java projects and achieves

state-of-the-art performance. The evaluation results show that

COLARE outperforms the state-of-the-art by 7.24% in accuracy

and 7.35% in macro F1 score. Since our approach is not limited

to Java, we further evaluate its performance in a multiple

programming language dataset, which contains 1, 581 commits

and is labeled by this paper’s first and fourth authors. The

results demonstrate the superiority of our model, with an

accuracy of 83.37% and a macro F1 score of 78.89%. We

also conducted comparisons with three baselines, and the

improvements achieved by COLARE range from 4.69% to

33.02%, 4.9% to 28.83% in accuracy and macro F1 score,

respectively. In the last, we conduct an ablation study to

delve deeper into the necessity of adapting CC2Vec and the

effectiveness of the three key components of our approach, i.e.,

commit messages, code diff, and file category features. The

results unequivocally confirm the positive contributions of all

components to the overall effectiveness of COLARE.

The main contributions of this work are summarized as

follows:

1) A hunk-level code change representation for commit

classification.

2) A labeled dataset of 1, 581 commits that were randomly

sampled from seven prominent programming language

repositories.

3) A hybrid commit classification approach that outperforms

the state-of-the-art. The approach is not specific to Java

programming language and first combines three sources

of key information to classify commits.

II. MOTIVATION

State-of-the-art approaches for commit classification fail

to leverage the hierarchical structure information and do not

explicitly capture the changes between old and new versions.

Although the code change representation produced by CC2Vec

[19] has the potential to address these issues, applying CC2Vec

directly to commit classification has two limitations, i.e., coarse-

grained comparison and key context information missing.

@@ -13,14 +13,15 @@

different header content for headers named in "Vary" need to get different
cache keys to prevent delivery of wrong content.
- A example: i18n middleware would need to distinguish caches by the
+ An example: i18n middleware would need to distinguish caches by the

@@ -95,8 +96,7 @@ def patch_response_headers(response, cache_timeout=None):
def add_never_cache_headers(response):

"""
- Add headers to a response to indicate that
- a page should never be cached.
+ Adds headers to a response to indicate that a page should never be cached.

"""
@@ -139,7 +140,8 @@ def get_cache_key(request, key_prefix=None):

"""
if key_prefix is None:

key_prefix = settings.CACHE_MIDDLEWARE_KEY_PREFIX
- cache_key = 'views.decorators.cache.cache_header.%s.%s' % (key_prefix, 
iri_to_uri(request.path))
+ cache_key = 'views.decorators.cache.cache_header.%s.%s' % (
+ key_prefix, iri_to_uri(request.path))

headerlist = cache.get(cache_key, None)
if headerlist is not None:

return _generate_cache_key(request, headerlist, key_prefix)

django/utils/cache.py

Fig. 1: Motivating example: A commit from Django

A. Limitation 1: Coarse-grained Comparison

The first challenge lies in CC2Vec’s tactic of comparing

the removed and added code lines at the file granularity. This

approach cannot exploit the inherent comparative information

available at the hunk level, making it arduous to capture fine-

grained differences in the code diff. We illustrate this point

with an example shown in Figure 1, which represents the

code diff within a single file in a real-world commit2 from

Django, a popular web framework project 3. Git uses hunk to

represent a cohesive set of modifications that can be applied

or reverted as a single unit [11]. In Figure 1, we can see that

there are three hunks: the first hunk appears at line 13, the

second hunk is positioned at line 95, and the third hunk begins

at line 139. Figure 2 shows how CC2Vec extracts features

from the code diff shown in Figure 1. Specifically, CC2Vec

extracts all embeddings of deleted and added code lines from

each hunk. Subsequently, it employs an attention mechanism to

2https://github.com/django/django/commit/
d453eda38852b1fb4f10a03a467abae8ca4ae927

3https://www.djangoproject.com/
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reduce the removed/added hunk embedding into removed/added

file embedding. After that, CC2Vec applies element-wise

comparison functions to these two file embeddings, deriving

the file-level code change representation.

Hunk1
@13

Hunk2
@95

Hunk3
@139

Rem
File

Vector

Add
File

Vector

File
Vector

Attention

Attention

Compare

Hunk1
@13

Hunk2
@95

Hunk3
@139

A example: i18n middleware would need
to distinguish caches by the

Add headers to a response to indicate
that
a page should never be cached.

cache_key = 'views.decorators.cache.
cache_header.%s.%s' % (key_prefix,
iri_to_uri(request.path))

An example: i18n middleware would
need to distinguish caches by the

Adds headers to a response to indicate
that a page should never be cached.

cache_key = 'views.decorators.cache.
cache_header.%s.%s' % (
key_prefix, iri_to_uri(request.path))

Encoding

Encoding Encoding

Encoding

Fig. 2: How CC2Vec deals with diff in a file.

While the attention mechanism can effectively model the

relations between input sequences (hunks within a modified

file) [19], it treats each input hunk as an independent token and

neglects the relative position of hunk within the modified file

[43], resulting that the yielded file encoding lacks positional

information associated with the modified hunks. The compari-

son functions CC2Vec employed are all element-wise, which

operate each corresponding element at identical positions in

the removed and added file embeddings. Due to the absence of

position information in the reduced file embeddings, element-

wise comparison at the file granularity may lead to unnecessary

noise. Following the rationale of CC2Vec, when comparing

the removed line from hunk@13 (hunk that begins at line 13

in Figure 1) with the added line from hunk@139, it becomes

challenging to derive a meaningful semantic. However, when

comparing the removed line and added line within hunk@13,

it is easy to infer that the semantic meaning of this hunk

modification is “fix a typo”.

To tackle this challenge, we adopt a hunk-level granularity

comparison to capture the semantics of hunk modifications,

as depicted in Figure 3. By conducting comparisons at this

fine-grained level, we can obtain representations for each hunk

that capture the differences between the old and new versions

locally. As shown in Figure 3, it is easy to infer that the

Hunk Vector @13 indicates the semantic “fix a typo” and the

Hunk Vector @139 indicates the semantic “reformat code”.

Subsequently, we employ transformers [43] to compute the

global representation of changes, i.e., the representation for

changed files, taking into consideration the interconnected

semantics from multiple local hunk changes.

B. Limitation 2: Key Context Information Missing

The second challenge in CC2Vec stems from its lack of

consideration for the context of changes, the hunk context and

modified files in particular, which are essential for commit

classification.

Hunk1
@13

Hunk1
@13

Hunk2
@95

Hunk2
@95

Hunk3
@139

Hunk3
@139

Hunk
Vector
@13

Hunk
Vector
@95

Hunk
Vector
@139

Compare

Compare

Compare

File
Vector

Transformer

Transformer

Transformer

����A example: i18n middleware would
need to distinguish caches by the����

����An example: i18n middleware would
need to distinguish caches by the����

����Add headers to a response to indicate
that
a page should never be cached.����

����Adds headers to a response to
indicate that a page should never be
cached.����

����cache_key = 'views.decorators.cache.
cache_header.%s.%s' % (key_prefix,
iri_to_uri(request.path))����

����cache_key = 'views.decorators.cache.
cache_header.%s.%s' % (
key_prefix, iri_to_uri(request.path))����

Encoding Encoding

Fig. 3: How our approach deals with file changes

Hunk Context refers to the lines that enclose the removed

or added lines within a modified hunk, as depicted by the

white background region in Figure 1. While the removed

and added lines are crucial for commit classification, the

context lines can provide additional information, such as

the name of the modified methods. The context lines can

indicate where the changes occurred and shed some light

on the reasons for specific modifications. For instance, in

Figure 1, the context of hunk@95 indicates that it represents

a simplification of the comments inside a function. This

supplementary context helps comprehend the nature and intent

of the changes made. Therefore, we deem hunk context

necessary in commit classification.

File Category Context refers to the categories of the

modified file within the project. In software projects, developers

organize software artifacts into different folders [51]. The

categorization of files is rich in information for determining the

types of maintenance activity. For instance, consider a single

file with the path “tests/gis tests/gdal tests/test raster.py” that

undergoes modification. It can be readily inferred that this

file is a test file. As a result, any modifications made to this

specific file would likely be classified as changes associated

with software testing. Considering the role of software testing

in ensuring software quality and functionality [24], such a

modification is more likely to be classified as an activity that

enhances the software, i.e., ‘perfective’ following Swanson’s

definition of maintenance activities [40].

Both the context of modified hunks and files are essential

for commit classification. However, CC2Vec neglects these

two crucial pieces of context information, focusing only on

the added and removed lines in modified files. To address

this limitation, our proposed approach fully considers the two

contexts. During our data preprocessing phase, we extend the

modified lines within hunks to include their contextual lines

to form the old and new versions of the hunk. This enables

the model to consider the context when comparing the old

and new hunks, as shown in Figure 3, where “...” represents

the hunk context (details in Section III-A1). To utilize the

context of modified files, we categorize the modified files

into five distinct categories: source code, build/configuration

management, testing, documentation, and others, following the
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categorization employed by Hindle et al. [18]. We use the

fine-grained line of code (LOC) features to measure the scale

of each type of modification and incorporate these change

features into our model. Detailed implementation can be found

in Section III-C.

III. MODEL ARCHITECTURE

COLARE has three components: the diff embedding module,

the message embedding module, and the file category fusing

module. Figure 4 shows the architecture of COLARE. We

provide the details of the three modules in the following

sections.

Transformer
Encoder

File Attention
Mask

Transformer
Encoder

Hunk Attention
Mask

Feed Forward Layer

Subtraction MultiplicationLinear

CodeBERT CodeBERT

Old Hunk Matrix New Hunk Matrix

CodeBERT

Commit Message

Feed Forward
Layer

Concat

Gate

Concat Gate

File Category
Features

Alpha

Gatting Mechanism

Comparison Layer

Linear+Softmax

Output
Probabilities

Hunk Reducer

File Reducer

Fig. 4: Architecture of the proposed model COLARE

A. Diff Embedding Module
This module encodes the changes within commits into

effective vector representations. We first perform the Diff
Preprocess to organize the commit diff into matrices of old and

new hunks based on its hierarchical structure. Subsequently,

we leverage the pre-trained model CodeBERT [10] to encode

these hunks to obtain the Hunk Representations. Then, we

apply a Comparison layer between the old and new hunk

encodings to capture the semantics of hunk modifications. In

the last, we employ a Hierarchical Reduction to compute the

ultimate embedding of commit diffs.
1) Diff Preprocess: As illustrated in the motivation section

II-A, we extract old and new code segments within commit

diffs at the level of hunk granularity. Specifically, we extract

the added and removed code lines within each hunk to form the

new and old versions, respectively. Notably, we preserve the

default contextual lines from git during extraction to provide

context for the modifications in each hunk.

A standard commit diff demonstrates a hierarchical organiza-

tion, wherein there are one or more modified files, and each file

contains one or more hunks consisting of added and removed

lines of code accompanied by contextual lines. To effectively

capture and retain this hierarchical structural information, we

represent the old and new version of hunks in each commit

as a two-dimensional matrix denoted by B ∈ R
F×H, where F

represents the number of modified files, and H represents the

number of modified hunks within each file. Specifically, we

use Bo and Bn to represent the two-dimensional matrices of

the old and new hunks.

The count of modified files in different commits fluctuates,

just like the hunk numbers within each modified file. For

parallelization [25], similar to CC2Vec [19], the number of

files in each commit is padded or truncated to a hyperparameter

F , while the number of hunks in each file is padded or

truncated to a hyperparameter H. In contrast to CC2Vec

[19], where the padded instances are incorporated into the

attention computation, we adopt an attention mask [43] to

prevent irrelevant padded instances from participating in the

computations. Specifically, during the construction of Bo and

Bn, we also compute file attention mask Mf (Mf ∈ {0, 1}F )

and hunk attention mask Mh (Mh ∈ {0, 1}F×H).

2) Hunk Representation: To obtain effective hunk represen-

tation, we fine-tune a Transformer-based pre-trained language

model CodeBERT [10]. CodeBERT has undergone pretraining

on a comprehensive dataset encompassing both natural language

(NL) and programming language (PL), rendering it well-suited

for code understanding tasks [10]. Its effectiveness has been

demonstrated in the latest code understanding tasks, such

as security patch detection [50]. For a hunk code segment,

we first tokenize it using the CodeBERT tokenizer [10] into

tokens, then feed these tokens into CodeBERT to obtain feature

vector representation. For the classification task, we select the

feature vector associated with the special token [CLS] as

the representation for the code segment. This process can be

described by the following equation:

Do[i][j] = CodeBERT(Tokenizer(Bo[i][j]))

Dn[i][j] = CodeBERT(Tokenizer(Bn[i][j]))

Here, D is a matrix with a shape of F ×H × 768, where

Dn[i][j] represents the new version of the jth hunk in the ith
file in a commit, while Do[i][j] denotes the corresponding old

version.

3) Comparison Layer: The semantics of hunk modifications

are derived by comparing the old and new versions of the hunk

code. For example, by comparing the old and new versions

of the hunk@13 shown in Figure 1, we can infer that the

semantic of this hunk modification is “fix a typo”. To capture

this semantic information at the hunk level, we employ three

widely adopted comparison functions [19, 44] to compare the

old and new hunk encodings: element-wise subtraction, element-

wise multiplication, and a feed-forward neural network.
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Specifically, for any i (1 ≤ i ≤ F) and any j (1 ≤ j ≤ H)

representing jth hunk in ith file, we denote the old version

of the hunk encoding as Vo (Vo = Do[i][j]) and the new

version of the hunk encoding as Vn (Vn = Dn[i][j]). For

element-wise subtraction, we simply subtract the old version

of hunk encoding from the new version of hunk encoding, i.e.,

Vsub = Vn − Vo. For element-wise multiplication, we perform

an element-wise multiplication between the new version hunk

encoding and the old version hunk encoding, i.e., Vmul = Vn�
Vo. For the forward neural network, we concatenate the new

version hunk encoding and the old version hunk encoding and

feed them as input into a forward neural network, i.e., Vnn =
Linear(ReLU(Linear(Vn ⊕ Vo))). Finally, we concatenate the

results of the three comparison functions and map the output

of the comparison layer to an appropriate dimension using

a feed-forward layer. This process can be described by the

following equations:

Vconcat = LayerNorm(Vsub ⊕ Vmul ⊕ Vnn)

Vcompare = Linear(ReLU(Linear(Vconcat)))

We perform this comparison process on each old and new

hunk encoding pair to obtain X , where X [i][j] represents the

semantics of the modification in the jth hunk of the ith file in

a commit.

X [i][j] = ComparisonLayer(Do[i][j],Dn[i][j])

4) Hierarchical Reduction: To leverage the hierarchical

structure of commits, wherein one or more files are modified,

and each modified file contains one or more modified hunks,

we employ a Hierarchical Reduction technique to compute the

final embedding of commit diffs from hunk embeddings.

Hunk Reducer takes multiple hunk embeddings as inputs

and reduces them to a single file embedding. This process is

achieved by employing a Transformer encoder [43], leveraging

multi-head attention and feed-forward neural networks. This

architecture enables the model to effectively capture the

intricate relationships among different positions within the

input sequence [43], i.e., the hunk embeddings. To address the

impact of padded hunks on attention weights, we introduce

the hunk attention mask Mh to mask the padded hunks, as

described in Sec. III-A1.

File Reducer takes multiple file embeddings as inputs and

reduces them to a single commit embedding. The architecture

of the file reducer mirrors that of the hunk reducer, with the

utilization of the file attention mask Mf , as described in Sec.

III-A1, to appropriately handle padded file embeddings.

B. Commit Message Embedding Module
CodeBERT [10] is trained on both natural language (NL)

and programming language (PL), making it well-suited for the

NL-PL understanding task. Similar to commit diff embedding,

we also utilize CodeBERT to encode commit messages. Firstly,

we employ the CodeBERT tokenizer to tokenize the commit

message into a sequence of tokens, which is then fed into

CodeBERT. For classification tasks, we choose the output

encoding corresponding to the special token [CLS] as the

embedding for the entire commit message. Furthermore, we

concatenate the embedding vectors of the code diff and the

commit message, feeding them to a feed-forward layer for

dimension mapping. This process results in the generation of

an embedding for a commit.

C. File Category Fusing Module

As illustrated in Sec. II-B, the categories of modified files are

essential to determine the maintenance activities of commits.

In our approach, we propose the file category fusing module to

boost the effectiveness of commit classification. Following

the file category scheme proposed by Hindle et al. [18],

we employ heuristic matching to classify each modified file

within a commit into one of five categories: source code,

testing, build/configuration management, documentation, and

others. Different from the study of Hindle et al. [18] that only

considers the number of changed files in each file category, we

leverage the file category feature in a more fine-grained way by

additionally calculating the number of modified lines in each

file category. Since the changed lines in code or non-code files

have different impacts on determining the maintenance activity

of a commit, we further categorize files into code or non-code

types using heuristic suffix matching. We analyze the variations

in code lines and comment lines separately for code files. The

code lines encapsulate the core functionality of a code file,

while the comment lines, which are devoid of functionality,

are utilized for explanatory purposes and to convey necessary

information. For non-code files, we exclusively monitor changes

in line counts. This method allows us to derive the LOC (Lines

of Code) features for each file category, thus allowing us to

measure the extent of modifications within each category.

Given that the output of Section III-B is the BERT embed-

ding of commits, and the file category features are numerical,

these two features might not occupy the same dimensional

space. We therefore view these as two distinct modalities and

employ the multimodal adaptation gate introduced by Rahman

et al. [35] to incorporate our refined file category features into

the proposed model. We denote the fusion representation of

code diff and commit message as Vcommit, and our refined

file category features as Vfcat. The multimodal adaptation gate

can then be expressed by the following equation:

Vout = Vcommit + αh

h = gf · (WfVfcat) + bh

α = min(
||Vcommit||2

||h||2 × β, 1)

gf = ReLU(Wgf [Vcommit ⊕ Vfcat] + bf )

Here, ⊕ signifies concatenation, Vout represents the fused

vector representation, which is the final representation of a

commit, Wf and Wgf are learnable parameters, and β is a

hyperparameter.
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IV. EXPERIMENT SETUP

A. Research Questions

In this paper, we aim to answer the following three research

questions:

• RQ1: How does our model perform compared to the

state-of-the-art commit classification technique in the Java

dataset?

• RQ2: How does our model perform in the multiple

programming language scenario?

• RQ3: How effective is each component of our model?

The approach presented by Ghadhab et al. [13] currently

achieves state-of-the-art performance but is limited to the

Java programming language. In RQ1, we compare our model

against theirs using their Java dataset for fairness. In RQ2, we

further investigate the performance of our model in a multiple

programming language scenario by comparing COLARE with

several baselines as well as the zero-shot ChatGPT [33]. In

RQ3, we perform an ablation study to explore the effectiveness

of each component of our model.

B. Datasets

We evaluated our model on two datasets. The first dataset is

provided by Ghadhab et al. [13], which is one of our baselines.

Comprising a total of 1, 793 labeled commits, this dataset was

collected from studies conducted by Levin and Yehudai [28],

Amor et al. [2], and Mauczka et al. [31] to ensure a balanced

distribution of maintenance activity labels. The second dataset,

which we curated and labeled, is a multi-language dataset

containing 1, 581 commits from 107 distinct projects written

in seven programming languages. We use this dataset to further

assess our model’s performance in classifying commits in

multiple programming languages.

In the realm of automatic commit maintenance classification,

the majority of existing studies [28, 30, 13, 17] primarily focus

on Java projects. Only Sarwar et al. [37] introduced a dataset

encompassing multiple programming languages. However, their

publicly available dataset4 lacks the SHA values of the commits,

making retrieving information such as code diffs challenging.

Hence, we constructed a multi-language dataset through two

steps: data collection and data labeling.

a) Data Collection: We selected seven influential pro-

gramming languages for our study: C++, Python, Java, Go, Rust,

JavaScript, and TypeScript. Considering the constraint of man-

ual labeling, we determined to collect a set of 250 commits for

each programming language. For Java, we randomly extracted

250 commits from the dataset provided by Levin and Yehudai

[28], as this dataset has been widely adopted in related studies

[13, 30] and already has labels. For the remaining languages,

we identified popular repositories primarily written in each

respective language. We followed prior work [37] to ensure

comprehensive coverage and quality of the dataset. Specifically,

we utilized the GitHub Rest API5 to sort repositories by star

4https://zenodo.org/record/3948445
5https://docs.github.com/en/rest

count and selected the top 20 repositories for each language,

resulting in a total dataset from 120 repositories.

We performed a manual inspection of these 120 repositories,

excluding those classified as resource-sharing or tutorial-

oriented repositories, such as Python-100-Days6, as they do not

meet the technical criteria for software development projects.

Through this cleanup process, we were left with a total of 96
repositories. These repositories span a wide range of software

domains, including programming languages, deep learning

frameworks, code editors, front-end frameworks, etc. Table I

presents the top three projects selected for each language.

TABLE I: Top three projects on each programming
language

Programming Language Top Three Projects

C++ tensorflow, electron, terminal
Python Python, Auto-GPT, youtube-dl

Go go, kubernetes, gin
Rust deno, rust, tauri

JavaScript react, bootstrap, javascript
TypeScript vue, vscode, TypeScript

Subsequently, we conducted a random sampling of 250
commits for each programming language. To ensure a balanced

representation, we performed uniform sampling within the

corresponding repositories for each language. For instance,

considering the existence of 18 repositories for the Rust

language, we randomly selected approximately � 250
18 � = 13

commits from each repository. In the end, we obtained a

comprehensive dataset comprising a total of 1, 750 commits

spanning across 107 projects written in 7 distinct programming

languages, where 250 Java commits were pre-labeled [28],

leaving us with 1, 500 commits that required manual annotation.
b) Data Labeling: We classified commits into Swanson’s

maintenance activities [40], which are widely followed by prior

work [13, 14, 37]. Specifically, Swanson categorized three types

of commits that conduct different maintenance activities:

1) Corrective: fixing bugs and faults in the project.

2) Perfective: enhancement of the project, such as perfor-

mance enhancement and source code refactoring.

3) Adaptive: modifications to the project to adapt it to the

new environment such as the feature addition.

Regarding the labeling rules, we adhere to the annotation

guidelines employed by prior work [37]. Performing multiple

types of modifications in a single commit is considered bad

practice as it undermines maintainability [1, 38, 4]. Hence, we

adopt a multi-class labeling scheme, wherein each commit is

assigned one unique label.

The annotation process involved the first and fourth authors

of this study. During this process, commits that encompassed

multiple changes or were automatically generated, such as

“Merge Branch” and “Revert Commit” were excluded. Conse-

quently, we were left with a final set of 1, 331 commits after

removing 169 commits. Upon labeling the commits, the two

authors assigned different labels to 270 (20%) commits. The

6https://github.com/jackfrued/Python-100-Days
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resulting Cohen’s kappa coefficient [6] between the two raters

was 0.55, indicating a moderate level of agreement [26]. To

address the discrepancies, three meetings were conducted to

discuss these 270 cases. When the two authors could not reach

a consensus, a third author served as an arbitrator.

In the end, we obtained a total of 1, 331 commits with

maintenance activity labeled. Additionally, by incorporating

250 randomly sampled Java commits from the dataset provided

by Levin and Yehudai [28], our final dataset comprised 1, 581
commit records. Among these, there were 989 commits labeled

as Perfective, 353 commits labeled as Corrective, and 239
commits labeled as Adaptive. Considering the approach taken

for data collection, this label distribution aligns with proportions

typically observed in real-world software projects.

C. Compared Techniques

In this study, we conducted a comprehensive comparative

analysis of COLARE against three baseline methods, along

with the zero-shot ChatGPT [33].

Ghadhab et al. [13] achieved state-of-the-art results by

leveraging fine-grained source code changes and BERT [8] to

enhance commit classification. The fine-grained source code

change features are mined through tools such as ChangeDis-

tiller [12]. The applicability of their approach, however, is

constrained to Java, as it is the only language supported by the

code distillers they employed [13]. Therefore, we compared

COLARE with their method on their dataset.

Sarwar et al. [37] fine-tuned a DistilBERT model for commit

classification, and Lee et al. [27] fine-tuned both CodeBERT

and RoBERTa to handle code diffs and commit messages,

respectively. These methods are designed to be language-

independent, which motivated us to compare COLARE with

their approaches on our multi-language dataset. Furthermore,

the Large Language Model-based ChatGPT [33] has recently

demonstrated remarkable achievements in code understanding

tasks, such as code summarization [41]. Considering this

noteworthy performance and popularity of ChatGPT, we

extended our evaluation to assess COLARE’s performance

in comparison with ChatGPT.

To ensure the validity of our comparison, we reused

the implementations of the compared techniques from their

reproducible packages. In the case of [27], where their packages

were unavailable, we re-implement the techniques strictly

following the description in their paper.

D. Implementation Details

Due to the constraints imposed by GPU memory capacity,

it is observed that in our dataset, approximately 80% of

commits comprise less than 4 modified files, and around 88%

of files contain fewer than 3 modified hunks. Consequently, in

the commit diff embedding module, we have configured the

hyperparameter F to be set to 4 and the hyperparameter H to 3.

Additionally, the hidden layer size of the code representation,

which corresponds to the output dimension of the comparison

layer, is set to 128. For computing the embeddings of files and

commits, we employ a two-layer Transformer Encoder with a

dropout rate [39] of 0.15.

In the commit embedding module, we utilize the pre-trained

CodeBERT [10] model with hidden size 768 provided by the

Hugging Face Transformer library. The weights of CodeBERT,

which are used for embedding commits, are shared with the

weights of CodeBERT in the code diff embedding module.

When combining the embeddings of the code diff and the

commit message, we set the output dimension of the feed-

forward layer to 768 and the hidden layer size to 2048.

In the file category fusing module, we utilize the multi-

adaptation gate mechanism [35] implemented in the multi-

transformers library developed by Gu et al. [15], with a dropout

rate [39] of 0.15. The hyperparameter of the multi-adaptation

gate mechanism is the default to 0.2.

We use cross-entropy loss function and AdamW optimizer

[29]. Considering that the lower layers of the BERT model

may contain more general information, we adopt a layer-

wise learning rate strategy for CodeBERT, following [22].

Specifically, the learning rate for the first three layers of BERT

is set to 1e−5; for the next four layers it is set to 2e−5, and

for the final four layers it is set to 4e−5. The learning rates

for the remaining modules are all set to 1e−4.

All experiments were performed on a server with two 24G

NVIDIA GeForce RTX 3090 GPUs, an Intel(R) Xeon(R) Silver

4310 CPU, and the Ubuntu 20.04.2 LTS operating system.

E. Evaluation Metrics

Given that we perform multi-class classification on commits,

following the footsteps of prior research in commit classifi-

cation [32, 2, 18, 28, 14, 37, 13, 20, 30, 27], we employ the

widely-used metrics: accuracy, precision, recall, and F1 score.

Moreover, considering our task involves classifying commits

into three distinct classes, we also incorporate macro average

metrics [21] into our evaluation framework to facilitate a more

comprehensive assessment. The macro average is computed as

the arithmetic mean of all the per-class metrics, i.e., precision,

recall, and F1 score.

V. RESULTS

A. RQ1: Comparison against Baseline in Java

a) Method: We conducted a comparison between our

proposed method, COLARE, and the approach proposed by

Ghadhab et al. [13] (denoted as GClassifier), which currently

stands as the state-of-the-art multi-class commit classification

method. As mentioned in Section III-A3, we compare CO-

LARE’s performance against GClassifier using the dataset

Ghadhab et al. provided. During the evaluation, we found that

the SHAs of 12 commits in their dataset are missing, making

retrieving the corresponding code diffs difficult. Therefore, we

removed the 12 commits, and the remaining 1, 781 commits

are used for comparison.

Our evaluation methodology employed a stratified five-fold

cross-validation technique [5] to comprehensively assess the

performance of the model. This approach randomly divided

the dataset into five subsets, each maintaining the same label
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distribution as the original dataset. In each iteration, one

subset was designated as the test set, while the remaining four

subsets served as the training set. This partitioning process

was uniformly applied for both GClassifier and COLARE. The

evaluated models were trained on the training sets and tested

on the test set. We report the average metrics obtained from

the five testing iterations.

TABLE II: Classification results of COLARE and baseline
(stratified five-fold cross-validation)

Metrics GClassifier[13] COLARE

Precisioncorrective 72.50% 82.77%
Recallcorrective 74.50% 81.53%
F1corrective 73.20% 82.09%

Precisionperfective 75.49% 85.02%
Recallperfective 70.00% 79.61%
F1perfective 72.25% 82.05%

Precisionadaptive 78.08% 78.55%
Recalladaptive 79.11% 84.36%
F1adaptive 77.93% 81.30%

Macro precision 75.36% 82.11%
Macro Recall 74.53% 81.83%
Macro F1 74.46% 81.81%
Accuracy 74.57% 81.81%

b) Results: Table II showcases the classification results

of COLARE and GClassifier approach, with the superior

results highlighted in bold. We can see that COLARE consis-

tently outperforms GClassifier across all metrics for commit

classification. Specifically, COLARE surpasses the baseline

by 7.24% in terms of accuracy. Furthermore, COLARE’s

performance betters the baseline in macro precision, macro

recall, and macro F1 score by 6.75%, 7.30%, and 7.35%,

respectively. When considering different maintenance activity

classes, COLARE also demonstrates significant improvements

compared to the baseline, especially in the ‘Perfective’ class,

where the improvement of the F1 score is nearly 10%.

Summary for RQ1: COLARE outperforms the state-

of-the-art baseline for automatic commit maintenance

classification on the Java dataset, with improvements

of 7.24% and 7.35% in accuracy and macro F1 score,

respectively.

B. RQ2: Effectiveness of COLARE in a Multi-language Sce-
nario

a) Method: In this research question, we delve further

into evaluating the performance of COLARE across projects

involving multiple programming languages. We compare

COLARE against two baseline approaches: Sarwar et al.

[37] (denoted as SClassifier) and Lee et al. [27] (denoted

as LClassifier). Recognizing the remarkable performance of

ChatGPT [33] in a variety of code-related tasks [41], we also

benchmark our model against ChatGPT. Given that ChatGPT

is driven by prompts [45], we adopted the Input Semantics

pattern proposed by White et al. [45] to build our prompt for

ChatGPT. Detailed information regarding the prompt can be

accessed in our online appendix [47]. This carefully curated

prompt encapsulates the classification task and the meaning of

each maintenance activity and requests ChatGPT to assign a

label for a particular commit. We use this prompt to send each

commit’s message and code diff to ChatGPT3.5 [33], which in

turn generates a maintenance activity label for each commit.
We conduced the experiments on the multi-language dataset

annotated in Sec. IV-B. Similar to the method adopted in RQ1,

we apply stratified five-fold cross-validation to evaluate the

models and report the average performance.

TABLE III: Classification results of COLARE and the
three baselines (stratified five-fold cross-validation)

Metrics ChatGPT SClassifier LClassifier COLARE

Precisioncorrective 49.68% 81.98% 86.55% 85.40%
Recallcorrective 90.08% 84.53% 82.51% 91.10%
F1corrective 64.00% 83.20% 84.37% 88.03%

Precisionperfective 82.47% 67.80% 69.50% 80.84%
Recallperfective 32.56% 65.18% 78.44% 72.83%
F1perfective 46.55% 66.33% 73.17% 76.31%

Precisionadaptive 28.58% 61.86% 67.21% 80.72%
Recalladaptive 65.22% 56.50% 63.17% 66.93%
F1adaptive 39.64% 58.59% 64.38% 72.33%

Macro precision 53.58% 70.55% 74.42% 82.32%
Macro Recall 62.62% 68.74% 74.70% 76.96%
Macro F1 50.06% 69.37% 73.98% 78.89%
Accuracy 50.35% 75.97% 78.68% 83.37%

b) Results: Table III presents the outcomes of our

comparative analysis, with the highest scores highlighted in

bold. As evidenced by the table, COLARE surpasses all the

compared methods, demonstrating superior performance in both

accuracy and macro F1 score. The improvements achieved

by COLARE span from 4.69% to 33.02% in accuracy and

from 4.9% to 28.83% in macro F1 score. These improvements

underscore the effectiveness and generalization capabilities of

COLARE. In regard to the corrective and perfective classes,

ChatGPT and LClassifier exhibit the highest performance in

some specific metrics, indicating potential directions for future

work to further enhance the performance of these particular

maintenance classes.

Summary for RQ2: In the context of multiple program-

ming languages, COLARE outperforms all baseline

approaches, showcasing improvements that range from

4.69% to 33.02% in accuracy and from 4.9% to 28.83%
in macro F1 score, respectively.

C. RQ3: Ablation Study
a) Method: In this research question, we first conduct

an ablation study to investigate whether our adapts on the

commit embedding module are effective. Since we optimized

CC2Vec to encode commit diff for commit maintenance

activity classification, we constructed a variant model denoted

as COLAREcc2vec, whereby we substituted the commit diff

embedding module with CC2Vec module.
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Furthermore, we delve deeper into the effectiveness of the

three key components in COLARE’s design: (1) Commit diff

embedding module, which captures changes at the hunk level

and leverages the hierarchical structure of commits to encode

commit diffs. (2) Commit message embedding module, which

utilizes a pre-trained CodeBERT to encode commit messages.

(3) File category fusing module, which integrates fine-grained

file category features using a multimodal adaptation gate to

enhance model performance. To investigate the effectiveness

of these three key components, we construct three variants

of COLARE: COLARE-code, COLARE-msg, and COLARE-fcat.

Specifically, COLARE-code removes the commit diff embedding

module. COLARE-msg removes the commit message embedding

module and directly combines the commit diff encoding

with fine-grained file category features for classification.

COLARE-fcat eliminates the fine-grained file category features

and directly combines the commit diff embedding with the

commit message embedding for classification. For evaluation,

we partitioned the dataset into training, validation, and test

datasets (7:1:2 ratio). We trained each model for 10 epochs,

selected the best-performing model based on the validation set,

and reported the evaluation metrics on the test set.

TABLE IV: Performance comparison between
COLAREcc2vec and COLARE

Metrics COLAREcc2vec COLARE

Accuracy 80.76% 87.06%

Macro F1 72.71% 85.08%

TABLE V: Results of the ablation study

Metrics COLARE-code COLARE-msg COLARE-fcat COLARE

Accuracy 82.97% 66.56% 85.80% 87.06%

Macro F1 79.40% 56.47% 82.08% 85.08%

b) Results: Table IV presents the performance com-

parison between the COLARE and COLAREcc2vec models.

COLARE outperforms COLAREcc2vec in both accuracy and

macro F1 score, indicating that our adaptations, particularly the

comparison of code changes at the hunk level, indeed enhance

the performance of maintenance activity classification. Table V

showcases the effectiveness of the standard COLARE model

and its variants. COLARE achieves superior performance in

both accuracy and macro F1 score compared to its variants.

COLARE-code exhibits a drop in performance, with a decrease

of 4.09% in accuracy and 5.68% in macro F1 score when

compared to COLARE. Similarly, when the file category fusing

module is removed, COLARE-fcat demonstrates a reduction in

performance for both accuracy and macro F1 score. These

results suggest that involving commit diff and file category

information plays a positive role in commit classification.

The variant COLARE-msg exhibits a significant performance

decline compared to COLARE-code and COLARE-fcat. This

decrease underscores the significance of the commit message

in maintenance activity classification.

Summary for RQ3: The three key design compo-

nents in COLARE, i.e., the hierarchical pre-trained

commit diff embedding module, commit message

embedding module, and fine-grained file category

features, are all effective and contribute to the im-

provement of COLARE’s performance. The comparison

with COLAREcc2vec demonstrates the significance of

addressing the coarse-grained comparison limitation of

CC2Vec.

VI. DISCUSSION

This section discusses the potential application of our

proposed approach and the validity threats of this study.

A. Conventional Commit Classification

Our approach is designed to classify commits into three

key maintenance activities. Recently, increasing projects have

applied conventional standard [7] to categorize commit main-

tenance activity. Conventional commits mandate developers to

adhere to a well-defined set of rules when crafting commit

messages, necessitating the inclusion of a specific type for

each commit. The maintenance types of conventional commits

encompass ten distinct categories, which refine the ‘perfec-

tive’ in Swanson’s commit maintenance categories [40] into

subcategories like test, ci, docs, refactor, and others. Despite

evaluating our model in the three maintenance activities, which

are widely used in existing classification studies, we also

explore whether our model is still effective in conventional

commit classification.

To collect commits that conform to the rules of conventional

commits, we selected the repository acquired from Sec. IV-B0a,

comprising a total of 96 repositories written in 6 programming

languages. Utilizing regular expressions, we parsed and ex-

tracted commits that met the criteria for conventional commits,

resulting in a total of 116, 292 qualifying commits. To control

the training time in an appropriate frame, we performed a

random sampling of 50, 000 commits from this pool. We

divided the dataset into training, validation, and test sets in an

8:1:1 ratio. After evaluation, our proposed model, COLARE,

achieved 70.70% accuracy, 60.28% macro F1, and 70.11%
weighted F1. To demonstrate the effectiveness of COLARE,

we also implemented one baseline [8] to classify commits into

conventional types and achieved 66.72% accuracy, 58.60%
macro F1, and 66.56% weighted F1. The 3.98% improvements

in accuracy, 1.68% improvements in macro F1, and 3.55%
improvements in weighted F1 illustrate the effectiveness of

COLARE when applied in the conventional scenario.

B. Practical Application

The automatic commit classification for maintenance activi-

ties facilitates the establishment of a well-organized tracking

system for development history, yielding various benefits

for software development. To promote the application of

COLARE, we have created a web dashboard to host our trained

model (demo accessible at [47]). We developed a user-friendly
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interface that enables users to input any GitHub repository

URL or commit URL to obtain the classification labels. Users

can simply input their commit data to COLARE via the

dashboard, and then the maintenance activities of these commits

will be displayed. Software practitioners can directly use the

categorized commits to improve work efficiency and quality.

For instance, software managers can gain a comprehensive

understanding of a repository’s maintenance activities and

make informed decisions. Researchers can take a further step

in measuring the capability and expertise of developers in a

finer granularity.

C. Threats to Validity

The section discusses potential threats to the validity. The

first threat lies in the multiple programming language dataset

we constructed. Sampling commits from popular repositories

across various programming languages may result in a limited

representation of less active projects. However, We deem

the impact of this threat to be trifling since our sampling

approach aligns with previous work [37], and our sample

covers these projects’ complete lifecycles, which contain their

initial and inactive stages. Additionally, while the selection

of 250 commits for each language might not represent the

optimal strategy for dataset creation, we had to balance the

volume of each language against the constraints imposed by

the cost of manual annotation. As a result, the size of our

final dataset is broadly in line with those used in previous

studies [28, 13]. Furthermore, the manual labeling process may

introduce subjectivity due to different raters. To mitigate this

concern, two authors independently labeled the data, and we

conducted several meetings to resolve any discrepancies.

The second threat relates to baseline implementation. As the

evaluation dataset changed, we took measures to replicate

the baseline models. For this purpose, we directly reused

the implementation of the baselines from their reproducible

packages whenever available. In the case of [27], where the

replication package was not made available, we re-implemented

their technique meticulously following the details provided in

their paper [27]. Given the implementation of Ghadhab et

al.’s [13] slightly lower than their reported performance, we

contacted the authors of [13] and obtained their recognition.

Finally, in Sec. IV-D, GPU memory limitations led to setting

hyperparameters F and H to 4 and 3, respectively. With more

robust GPUs, these parameters can be increased, potentially

reducing truncations and enhancing COLARE’s performance.

VII. RELATED WORK

With the increasing complexity of software development,

classifying code changes into different maintenance activities

has been widely explored with the aim of easing the burden of

software management. The commit message, which developers

use to describe the changes they made within a repository,

serves as a crucial role in all commit maintenance activity

classification studies. In these studies, Mockus et al. [32]

and Hindle et al. [18] employed word frequency analysis to

select keywords from commit messages as features. Levin and

Yehudai [28] utilized one-hot keyword vectors extracted from

commit messages as features, which were further extended

by Herivčko et al. [16] through the exploitation of semantic

similarities between words in the commit message. Gharbi et al.

[14] represented commit messages using the Term Frequency-

Inverse Document Frequency (TF-IDF) technique. Heričko

et al. [17] leveraged word2vec to represent words in the

commit message and aggregated the word vectors into a commit

message vector. Sarwar et al. [37], Ghadhab et al. [13], and Lee

et al. [27] employed Transformers [43] based techniques such

as BERT [8] to encode and model commit messages. These

methods face a major challenge: their reliance on commit

message quality, which is often subpar. Dyer et al. [9] reported

over 14% of SourceForge project commit messages were empty.

Tian et al. [42] found nearly 44% of messages in active open-

source projects needed improvement.

To mitigate this issue, several studies have explored features

of code diffs within commits. For instance, Levin and Yehu-

dai [28] used ChangeDistiller [12] to extract features from

code changes, such as the frequency of condition expression

modifications. Building upon Levin and Yehudai’s [28] code

features, Mariano et al. [30] expanded the feature set to include

attributes such as the number of modified files and added

lines of code. Hönel et al. [20] utilized various methods to

analyze the code density of commits for classification purposes.

Popoola et al. [34] employed Random Forest to classify

commits based on seven features extracted from code changes.

Ghadhab et al. [13] combined bug fixes and refactoring-related

features from code diffs with features extracted using BERT for

commit classification, achieving state-of-the-art performance.

Lee et al. [27] utilized CodeBERT [10] to directly encode

code diffs, aiming to enhance the performance of identifying

vulnerability-related commits. In this study, we introduce an

enhanced code change representation technique to encode

commit diffs, integrating commit message embeddings and

detailed file category features. Our approach has achieved the

best performance in commit classification.

VIII. CONCLUSION

In this study, we optimized a code changes representation

model, CC2Vec, to classify commits into three maintenance

activities. We introduced three key improvements to CC2Vec:

utilizing CodeBERT for code encoding, doing hunk-level

comparison, and incorporating fine-grained features of changed

files and code lines. Our evaluations were conducted on both

Java and multiple programming language datasets, revealing

that our approach surpasses the state-of-the-art, including

ChatGPT 3.5. To facilitate replications or future work, we

provide the data, scripts, and other resources used in this study

at: https://zenodo.org/records/10500219.
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